vaccination 2722937 1920

Príprava jednotlivej očkovacej vakcíny pozostáva z viacerých krokov za použitia komplikovaných laboratórnych a technologických postupov. Veľmi zjednodušene ich môžeme charakterizovať nasledovne:

Ako prvé je potrebné namnoženie patogénu, ktorý bude neskôr stimulovať imunitnú odpoveď. Proteíny alebo DNA daného patogénu (teda pôvodcu ochorenia), získané z rôznych materiálov (krv, sliny, chrasty, tekutina z vezikúl...) potrebujú rásť na určitom rastovom materiáli – vírusy rastú na primárnych bunkách alebo bunkových líniách; baktérie rastú v potrebných bioreaktoroch a rekombinantné proteíny môžu byť generované buď na kvasinkách, baktériách alebo bunkových kultúrach.

Druhým krokom je uvoľnenie a izolácia daného patogénu  z rastového materiálu. Snahou je získať čo najviac materiálu, ktorý je následne purifikovaný, teda očistený použitím viacerých separačných techník.  

Po získaní patogénu sa spracuje podľa toho, či je cieľom získať typ vakcíny so živým, ale atenuovaným, teda oslabeným vírusom, inaktivovaný typ, rekombinantný alebo toxoidový typ vakcíny. Následne sa pridávajú adjuvanciá, ktoré posilňujú odpoveď imunitného systému, a taktiež ďalšie pomocné látky, ktoré napomáhajú samotnej aplikácii očkovacej látky.1

Komplikovaný proces prípravy očkovacej vakcíny, už ako bolo vyššie uvedené, zahŕňa použitie bunkových kultúr, ktoré konkrétny patogén napadne, v nich rastie, dozrieva a množí sa. Použité sú mnohé typy bunkových kultúr získané z viacerých zdrojov. Ide jednak o opičie embryonálne alebo obličkové bunky, kuracie a králičie embryá a žiaľ, taktiež aj ľudské embryonálne bunky.

„Podľa môjho... osobného názoru, vidiac utrpenie rodín s deťmi postihnutými kongenitálnym rubeolovým syndrómom, mám za to, že to, čo sme spravili, bolo stopercentne morálne,“2 hovorí Dr. Stanley Alan Plotkin (* 12. 05. 1932), syn židovských rodičov Lee a Josepha, ktorí emigrovali z Anglicka do Spojených štátov amerických3, pediater a vakcinológ, na ktorého výskumnej práci využívajúcej eticky sporné množenie vírusov práve na ľudských embryonálnych bunkových kultúrach sú dodnes založené mnohé vakcíny, vrátane tých proti ružienke, besnote, rotavírusom, detskej obrne či ovčím kiahňam.

Ak by ste si mysleli, že problematika využitia daných neetických vakcín sa nás na Slovensku netýka, mýlite sa. V nasledovnej tabuľke je uvedený prehľad vakcín, ktoré sú na Slovensku bežne dostupné a používané. Zvýraznené sú vakcíny, ktoré sú povinné, resp. sú v kombinácii s vakcínou, ktorá patrí medzi povinné očkovanie.

Súbor dát: Očkovacie látky pripravované na ľudských embryonálnych kmeňových bunkách
OchorenieDruh očkovaniaStupeň repugnancie (pre lekárnikov)RSR klasifikáciaNázov vakcínyVýrobcaPoužitá bunková línia
hepatitída ADobrovoľné⊗ Nikdy nevydávať➄ Vyvinuté neetickým spôsobomHavrix 720 Junior monodoseGlaxoSmithKline Biologicals S.A., BelgickoMRC-5
hepatitída ADobrovoľné⊗ Nikdy nevydávať➄ Vyvinuté neetickým spôsobomHavrix 1440 Dosis adultaGlaxoSmithKline Biologicals S.A., BelgickoMRC-5
hepatitída ADobrovoľné⊗ Nikdy nevydávať➄ Vyvinuté neetickým spôsobomVaqta 50 UMerck Sharp & Dohme B.V. (NLD)MRC-5
hepatitída ADobrovoľné⊗ Nikdy nevydávať➄ Vyvinuté neetickým spôsobomVaqta 25 UMerck Sharp & Dohme B.V. (NLD)MRC-5
hepatitída ADobrovoľné⊗ Nikdy nevydávať➄ Vyvinuté neetickým spôsobomAvaxim 160 USanofi Pasteur (FRA)MRC-5
hepatitída A a BDobrovoľné⊗ Nikdy nevydávať➄ Vyvinuté neetickým spôsobomTwinrix PaediatricGlaxoSmithKline Biologicals S.A., BelgickoMRC-5, kvasinky
hepatitída A a BDobrovoľné⊗ Nikdy nevydávať➄ Vyvinuté neetickým spôsobomTwinrix AdultGlaxoSmithKline Biologicals S.A., BelgickoMRC-5, kvasinky
hepatitída A a BDobrovoľné⊗ Nikdy nevydávať➄ Vyvinuté neetickým spôsobomAmbirix GlaxoSmithKline Biologicals S.A., BelgickoMRC-5, kvasinky
osýpky, príušnice, ružienkaPovinné◎ Odporúčame nevydať➄ Vyvinuté neetickým spôsobomPriorixGlaxoSmithKline Slovakia s.r.o., Slovenskokuracie embryá, MRC-5
osýpky, príušnice, ružienkaPovinné◎ Odporúčame nevydať➄ Vyvinuté neetickým spôsobomPriorix IagGlaxoSmithKline Biologicals S.A., Belgickokuracie embryá, MRC-5
osýpky, príušnice, ružienkaPovinné◎ Odporúčame nevydať➄ Vyvinuté neetickým spôsobomM-M-RVAXPROMSD VACCINS, Francúzskokuracie embryá, WI-38
osýpky, príušnice, ružienka, ovčie kiahnePovinné◎ Odporúčame nevydať➄ Vyvinuté neetickým spôsobomPriorix TetraGlaxoSmithKline Slovakia s.r.o., Slovenskokuracie embryá, MRC-5
osýpky, príušnice, ružienka, ovčie kiahnePovinné◎ Odporúčame nevydať➄ Vyvinuté neetickým spôsobomProQuadSanofi Pasteur MSD SNCkuracie embryá,WI-38, MRC-5
ovčie kiahneDobrovoľné⊗ Nikdy nevydávať➄ Vyvinuté neetickým spôsobomVarivaxMerck Sharp & Dohme B.V. (NLD)MRC-5
pásový opar - varicella zoster virusDobrovoľné⊗ Nikdy nevydávať➄ Vyvinuté neetickým spôsobomZostavaxSanofi Pasteur MSD SNC, (FRA)MRC-5
Dátum poslednej aktualizácie: 5. 12. 2020
Súbor dát je súčasťou článku Očkovacie látky pripravované na ľudských embryonálnych kmeňových bunkách
Dáta spravuje: Lekárnici za život – Slovensko, o. z. | Rabčianska 614/4 | 02943 Zubrohlava | Slovenská republika | IČO: 51957175 | Reg.č.: VVS/1-900/90-54487 | IBAN: SK37 1100 0000 0029 4306 6653
Zodpovedný redaktor: Mgr. Veronika Cagáňová, .
Odkaz na vloženie súboru dát na Vaše webové stránky: https://lzz.sk//index.php?option=com_tabulizer&task=outputDataSource&tmpl=component&output=raw&ds_tag=30prv6PXXLM4xHRj0mPby5VS&ds_mode=html


Dr. Plotkin pracoval tiež na vakcíne proti cytomegalovírusu a HIV, ale účinnosť týchto vakcín sa nepreukázala.

Avšak väčšina tých, ktorí sa stretli s menom Dr. Plotkina, sa zameriava práve na jeho kontroverzné rozhodnutie, ktoré učinil pri vývoji vakcíny proti ružienke – ktorú dnes reprezentuje písmeno „R“ v dnešnej tzv. „M-M-R“ vakcíne.

Pretože vírusy potrebujú mechanizmy bunky na to, aby sa vedeli replikovať – ako sme už uviedli vyššie – zahájiť výskum či výrobu celovírusových vakcín obsahujúcich živý oslabený vírus alebo inaktivovaný vírus si vyžaduje používanie bunkovej línie s konkrétnymi a stabilnými charakteristickými vlastnosťami. Na takejto bunkovej línii sa potom vírus rozmnožuje, aby do jeho štruktúry mohli vedci následne urobiť ďalšie umelé zásahy v závislosti od druhu vakcíny, ktorej má byť vírus súčasťou. Z pohľadu nákladov na výrobu vakcíny, ktorý je kľúčový najmä pre farmaceutické spoločnosti ako výrobcov vakcíny sú dôležité najmä dva aspekty:

1) aby bunková línia, na ktorej sa má vírus replikovať pozostávala z takého typu buniek, ktoré vírusu umožňujú „dobrú replikáciu“ čo do kvality i kvantity (resp. ktoré vírus „ľahko napáda“ a spôsobuje v nich „značnú infekciu“) – rozumej rýchlu replikáciu bez zbytočných mutácií;

2) aby bunková línia, na ktorej sa má vírus replikovať bola „nekonečne“ jedna a tá istá – s každou zmenou typu buniek, na ktorých sa má vírus množiť by museli farmaceutické spoločnosti spustiť proces testovania vakcíny všetkými troma fázami klinického testovania celkom odznova (Predklinická fáza: laborátorne testy a štúdie na zvieratách; Fáza 1: testy na 10-100 ľuďoch, štúdie o bezpečnosti a dávkovaní; Fáza 2: testy na desiatkach až stovkách ľudí, štúdie o účinnosti, dávkovaní a vedľajších účinkoch; Fáza 3: testy na stovkách až tisíckach ľudí, štúdie o účinnosti a nežiadúcich účinkoch;), nehovoriac o schvaľovacích konaniach jednotlivých liekových štátnych agentúr, ktoré by tiež museli prebehnúť nanovo.

I.

Vznik a použitie bunkovej línie WI-38 alebo Plotkinovo kontroverzné rozhodnutie v závode proti rubeole v tieni Hayflickových výskumov bunkového starnutia na potratených ľudských plodoch

Už v roku 1907 biológ a anatóm Ross Granville Harrison4 (1870 –1959) pôsobiaci na Johns Hopkins University v Baltimore (štát Maryland, SŠA) dokázal v lymfe – teda zjednodušene v tkanivovom moku – kultivovať žabie neuroblasty. Svojím výskumom tak v rámci embryológie potvrdil svoju hypotézu, že nervové vlákna sa vyvíjajú osamote, bez toho, aby existoval nejaký „mostík“, okolo ktorého by sa formovali. Zároveň tým však Harrison preukázal, že tkanivá môžu rásť aj mimo tela.

V roku 1949 ohlásili pred svetovou vedeckou obcou traja americkí virológovia, a to John Franklin Enders5 (1897 - 1985), Thomas Huckle Weller6 (1915 –2008) a Frederick Chapman Robbins7 (*1916 – 2003) , že sa im úspešne podarilo zvierací poliovírus nielen izolovať, ale aj kultivovať in vitro. V roku 1954 obdržali všetci traja Nobelovu cenu za „ich objav schopnosti poliovírusov rásť v kultúrach rôznych tkanivových typov“8 .

Avšak, ako uvádza Wadman vo svojej knihe „Závod o vakcínu: Veda, politika a ľudské straty stojace za porazením nákazy“, tradičných priekupníkov v tejto problematike zatienil neznámy Dr. Leonard Hayflick (* 20. 05. 1928), syn židovských rodičov pochádzajúcich z robotníckej triedy9, ktorého niektorí jeho kolegovia opisovali ako „človeka bez predstavivosti“ síce „húževnatého“, ale „pomalého pri práci“10.

Niektoré zdroje ako napr. Wadman uvádzajú, že Dr. Hayflick, pracujúci pre Wistar Institute v Pensylvánii, SŠA sa v prvom rade zaujímal o rozdiely a postup v raste, teda v delení buniek v rámci bunkových kultúr. Nádejal sa, že príde na to, čo spôsobuje, že zdravé bunky „praskajú“ a zomierajú, a teda, že bunka sama rozštiepi svoju DNA na fragmenty, rozloží vlastné proteíny a pomocou cytoskeletu sa rozpadne na viacero apoptotických teliesok, ktoré sú v extracelulárnom prostredí pohltené okolitými bunkami. Dr. Hayflick mal teda primárne študovať fenomén, ktorý dodnes nesie jeho meno – Hayflickov limit11. Každopádne, Hayflick prišiel na to, že každý typ bunky je schopný deliť sa iba určitý, konečný počet cyklov, a keď bunky dosiahnu tento limit – začnú sa prejavovať znaky senescencie, teda bunky zostarnú natoľko, že sa prestávajú ďalej deliť a umierajú riadenou fyziologickou smrťou – apoptózou.

Dr. Hayflick opísal, že s každým ďalším mitotickým delením bunky dochádza ku skracovaniu jej telomérov, ktoré určujú jej vitalitu a životnosť.

Hayflickovi obhajcovia uvádzajú, že na to, aby k týmto zisteniam dospel, bol tento húževnatý, ale málo kreatívny bádateľ ochotný siahnuť aj po potratených ľudských embryách preto, že na účely jeho výskumu predstavovali „najmladšie dostupné bunky“.

Jeho odporcovia však poukazujú na to, že Dr. Hayflick pracoval na „inom zadaní“ už od začiatku pri vývoji bunkových línií WI-1 až WI-25 (Wistar Institute ako výskumné stredisko, na ktorom Dr. Hayflick pracoval a číslo ako poradové číslo línie) a ako sám uvádza vo svojej práci, tak postupne izoloval bunky z pľúc, kože, svalov, obličiek, srdca, štítnej žľazy, týmu (alebo teda z tzv. „detskej žľazy“, v ktorej dochádza k dozrievaniu T-lymfocytov, teda hlavných regulačných buniek špecifickej imunity) a pečene celkom až z 21 ľudských plodov, selektívne a premyslene potratených za účelom vývoja bunkovej kultúry vhodnej na replikáciu vírusov12, alebo ako sám napísal:

„Izoláciou a charakterizáciou ľudských diploidných bunkových kmeňov z tkanív plodu je možné z tohto typu buniek urobiť substrát pre produkciu živých vírusových vakcín. Okrem ich ekonomických výhod takéto kmene – na rozdiel od heteropolidných bunkových línií – preukazujú tie charakteristiky, ktoré sú zvyčajne vyhradené len normálnym primárnym bunkám, čo z úvah o ich použití pri produkcii ľudských vírusových vakcín robí zreteľnú možnosť.“13

Vo veci „dodávky biologického materiálu“ tohto druhu sa Hayflick obrátil na svojho švédskeho kolegu, bakteriológa a vírusológa Svena Garda14 (*1905 – 1998) zo štokholmského Karolinska Institute vo Švédsku, keďže v Spojených štátoch amerických boli potraty – na rozdiel od Švédska tej doby – značne zákonne obmedzené až do vynesenia rozsudku Najvyšším súdom SŠA vo veci Roe vs. Wade v roku 1973.

A keďže došlo pri poruche na elektrickej mrazničke vo Wistar Institute k zničeniu bunkových línií WI-1 až WI-25, ktoré bol býval predtým Hayflick kultivoval z už zmienených potratených ľudských plodov, obrátil sa na Sveda Garda opäť, aby mu ten poslal pľúca a ľadviny zo zdravého ľudského plodu, na ktorý spomína Hayflickov kolega, Stanley Plotkin, týmito slovami:

„Tento plod vybral Dr. Sven Gard špeciálne na tento účel. Obaja rodičia sú známi, a nanešťastie pre tento príbeh [o vývoji a produkcii vakcíny proti rubeole na ľudskej bunkovej línii], sú spolu zosobášení, stále žijúci a v dobrom stave, pravdepodobne bývajúci v Štokholme. Potrat bol vykonaný, pretože cítili, že majú až príliš veľa detí. Pri oboch rodičoch sa nenašla zmienka o akýchkoľvek chorobách v rodine, a takisto ani žiadna zmienka o rakovine v oboch ich rodinách.“15

Z úmyselne potrateného 16-týždňového (uvedené v gestačnom veku, teda plodu v 16-tom týždni tehotnosti matky) ľudského plodu ženského pohlavia švédskej matky, ktorá na použitie buniek jej potrateného dieťaťa na vedecké účely nielenže nedala súhlas, ale o ňom ani nevedela, Dr. Hayflick izoloval v júni 1962 bunky, ktoré sa stali základom embryonálnej bunkovej línie, ktorá sa používa dodnes, a ktorú označil ako WI-3816. Hayflick tu pri číslovaní línií preskočil z označenia WI-27, teda línie ktorá vyhynula, priamo na číslo 38.17 Žiaľ, vývoju tejto bunkovej línie predchádzalo už dovedna 80 potratov jednotlivých plodov18.

Všetky tieto udalosti mali svoj pôvod v laboratóriu Wistar Institute takpovediac „naproti“ dverám kancelárie Dr. Plotkina, a aby toho nebolo dosť, kontroverzia vakcíny proti ružienke, ktorá je dnes súčasťou schémy povinného očkovania aj na Slovensku, a ktorej vývoj nastolil trend využívania ľudských bunkových línií pretrvávajúci v bio-medicínskom výskume dodnes, spočíva v tom, že Dr. Plotkin sa rozhodol na replikáciu vírusu ružienky použiť práve bunkovú líniu WI-38, ktorú vytvoril Dr. Hayflick z ľudských embryonálnych fibroblastov pľúc potrateného ľudského plodu.

Fibroblasty, z ktorých pozostáva táto bunková kultúra, sú bunky, ktoré pomáhajú udržať pokope tkanivá ako je napr. pokožka. Ako každá jedna bunka v tele, okrem mužských spermií a ženských vajíčok – sú tieto bunky diploidné, čo znamená, že obsahujú dva sety chromozómov. Je dôležité vedieť o tomto všeobecnom pomenovaní buniek pochádzajúcich z potrateného ľudského plodu, ktoré zaviedol Dr. Plotkin vo svojich prácach, pretože farmaceutické spoločnosti dodnes pokračujú v používaní tohto neutrálneho označenia pre tento typ eticky sporne získaných buniek vo svojich príbalových letákoch k rôznym vakcínam.

Dr. Plotkin obhajoval svoje kontroverzné rozhodnutie tým, že na embryonálnych bunkách spomínanej bunkovej kultúry sa vírus dobre replikoval. Vírus ružienky totiž nanešťastie napáda veľmi ľahko bunky plodu. Ak sa žena nakazí vírusom ružienky v raných štádiách tehotenstva, jej dieťa sa s veľkou pravdepodobnosťou narodí slepé, hluché, autistické, mentálne retardované alebo s rôznymi poruchami srdca, keďže infekcia má vhodné podmienky na šírenie v novosfomovaných, dlhých a tenkých vláknach šošovky oka, v jemných štruktúrach stredného ucha, ktoré je sídlom sluchu, vo výstelke srdca či v malých krvných cievkach, ktoré zásobujú vyvíjajúci sa mozog kyslíkom a výživnými látkami.

Ako ďalší dôvod pre obhajobu svojho rozhodnutia uvádza Dr. Plotkin, že v čase, keď začiatkom šesťdesiatych rokov minulého storočia podnikal svoj výskum, vedci prišli na to, že niektoré zvieracie bunkové línie boli kontaminované inými vírusmi. Vedecká obec biológov, bakteriológov a vírusológov sa preto v tom čase pokúšala zistiť, či prítomnosť týchto iných vírusov môže pôsobiť škodlivo na bunkové kultúry. Dr. Plotkin sa ale rozhodol obísť tento vtedy aktuálny vedecký problém použitím embryonálnej bunkovej línie, keďže zdravý ľudský plod sa predtým – ako ho jeho matka nechala potratiť – vyvíjal v sterilnom prostredí maternice, a teda jeho bunky neboli napadnuté infekciou.

II.
Hayflickov limit proti Hayflickovi alebo pasážovaním sa „nerozlievajú vody večnej fontány mladosti“ a zdravé bunkové línie sú smrteľné

Mnohí obhajcovia Plotkinovho rozhodnutia – a žiaľ, aj zle informovaní slovenskí biskupi a teológovia – dodnes mylne tvrdia, že vďaka technike zvanej „pasážovanie buniek“ je možné jednu bunkovú líniu množiť prakticky „donekonečna“, a teda že ďalšie potraty kvôli pokračujúcej výrobe vakcín nebudú už v budúcnosti potrebné.

Ako teda funguje pasážovanie? Je to zázračná metóda, ktorou vedci „rozliali vody večnej fontány mladosti“?

Keď sa bunky delia v laboratórnych podmienkach sú obmedzené množstvom výživných látok, povedzme „rastovým médiom“ a rozlohou kontajnera (z aj. „culture dish“ alebo „plate“, teda rozlohou Petriho misky), v ktorom sa množia. Keď vyčerpajú bunky svoje možnosti dané priestorom Petriho misky – čo sa v biológii nazýva konfluencia – teda sa delením pomnožia natoľko, že pokryjú celú plochu misky, bunky začnú odumierať. Výskumník však vždy tesne predtým, než bunky dosiahnu tento bod, odoberie z pôvodnej monokultúry jednu pätinu buniek z povrchu misky a „zasadí“ ju na päť nových Petriho misiek, ktoré obsahujú dostatok „čerstvých“ pre nich potrebných výživných látok. Po niekoľkých ďalších dňoch bunky v každej z piatich misiek opäť spotrebujú výživu a pomnožia sa natoľko, že pokryjú celú ich plochu. Vtedy výskumník opäť z každej z piatich misiek odoberie jednu pätinu buniek, aby ich rozdistribuoval do ďalších dvadsiatichpiatich misiek.

Zakaždým, keď sú bunky rozdelené do nových misiek, sú považované za novú pasáž, ktorá je o jednu pasáž staršia, ako tá, z ktorej boli rozdelené. Teda v našom prípade, prvé rozdelenie buniek do piatich misiek by bola pasáž č. 1 a následné rozdelenie buniek do 25 misiek by bolo už pasážou č. 2 jednej a tej istej bunkovej línie.

Výskumníci tento údaj o poradovom čísle pasáže tej-ktorej bunkovej línie, ale aj rýchlosť, akou sa dokáže počet buniek v kultúre zdvojiť (tzv. „doubling time“), prísne sledujú a dodnes zaznamenávajú v katalógoch bunkových kultúr.

Žiadne zdravé bunky sa teda nedokážu množiť donekonečna a každá bunková línia, ktorá z takýchto buniek podliehajúcich prirodzenému starnutiu pozostáva, raz – po dosiahnutiu Hayflickovho limitu – vyhynie. V roku 1964 to vo svojej štúdii potvrdil sám Dr. Hayflick, pôvodca bunkovej línie WI-38, o ktorej sme už hovorili. Hayflick napísal: „Je potrebné prihliadať na teóriu bunkového starnutia, keďže bolo preukázané, že normálne diploidné bunkové zhluky in vitro sú v skutočnosti smrteľné. Pokiaľ je nám známe, tak nikto doteraz nedokázal, že by bunky, ktoré majú karotyp tkanív, z ktorých pochádzajú, boli schopné množiť sa in vitro dlhšie než je životnosť druhu, z ktorého boli tieto tkanivá získané.“19

Podľa katalógu bunkových kultúr expasy.org sa životnosť bunkovej línie WI-38 odhaduje na 50 (+- 10) zdvojení populácie, pričom k zdvojeniu populácie buniek dochádza približne každých 24 hodín. Prvé prejavy bunkového starnutia – teda senescencie sa objavujú približne od 38 zdvojenia populácie buniek.

Ak by malo platiť to, čo skonštatoval v roku 1964 sám Dr. Hayflick, za predpokladu, že by pasážovanie pokračovalo neprerušovane a zároveň, ak vezmeme do úvahy priemernú dĺžku života švédskych žien – keďže bunková línia pochádza z potrateného švédskeho plodu ženského pohlavia – ktorá sa v rokoch 2009 až 2019 pohybovala od 83,55 až do 84,24 rokov20, potom dostaneme približný dátum, kedy by bunková línia WI-38 mala vyhynúť – v apríli 2046. Niekoľko rokov predtým – podľa katalógu po 38. zdvojení populácie – teda okolo roku 2025 by mala bunková línia vykazovať prvky bunkového starnutia, výťažok buniek z nových pasáží by sa mal znižovať.

Po tridsiatich rokoch výskumu na týchto a stovkách ďalších bunkových líniách pochádzajúcich z potratených ľudských plodov, napísal Dr. Hayflick v roku 1997, že všetko to vynaložené úsilie, aby sa dosiahla nesmrteľnosť bunkových kultúr bolo „márne“.21

Ak sme teda povedali, že zdravé bunky sa môžu deliť maximálne do 50-tej pasáže, ako je potom možné, že jedna bunková kultúra sa používa na produkciu vakcín už viac ako 50 rokov?

Keď výskumníci pasážujú bunkovú populáciu, tak miesto toho, aby bunky kontinuálne „sadili“ na nové a nové Petriho misky a pokračovali v ich množení, tak niekoľko misiek z pasáže zamrazia. Povedzme, že z 25 misiek v pasáži č. 2 sa výskumníci rozhodnú ďalej „zasadiť“ len 5 misiek a zvyšných 20 nechajú zamraziť. Zmienených 20 misiek je potom umiestnených do špeciálnych kontajnerov a bunky sú podľa vopred stanoveného protokolu zmrazené a udržiavané pri teplote -200 °C v tekutom dusíku. Pri tejto teplote sa zastaví akákoľvek biologická aktivita buniek. Avšak, potom, ako sú bunky znovu rozmrazené a „zasadené“ do nových Petriho misiek obsahujúcich výživné látky, bunky začnú znova „rásť“, teda množiť sa.

V závislosti od toho, o aký typ bunky ide a aká veľká Petriho miska je, môže množstvo buniek z nášho prípadu vyprodukovať od 8 do 20 kontajnerov buniek, ktoré sa môžu zmraziť. Bunky z tejto pasáže č. 2 môžu byť kedykoľvek rozmrazené, najčastejšie v objeme jedného až dvoch kontajnerov naraz, aby sa mohol začať celý proces množenia buniek vždy znova, keď súčasne využívaná pasáž príliš zostarne. Tak či tak, za pár dní v ďalších piatich miskách dosiahnu bunky konfluenciu a teda ďalšie kontajnery buniek bude možné dať zamraziť.

Mylnú predstavu o nesmrteľnosti zdravých bunkových línií vyvoláva práve skutočnosť, že bunky sa množia exponenciálnym rastom, je ich možné pasážovať a časti jednotlivých pasáží následne zmrazovať tak, aby sa zastavila akákoľvek biologická aktivita buniek, vrátane ich starnutia.

Hayflick vyrátal, že ak budeme takýmto spôsobom rozdeľovať bunky na nové misky vždy tesne predtým ako dosiahnu stav konfluencie, a to až do času, kým sa pôvodná bunková populácia nezdvojnásobí 50 ráz – teda až kým nedosiahne Hayflickom limit – je možné takýmto spôsobom kultivovať až 1022 buniek. A keďže Hayflick vedel, že 14,2 milióna „mokrých“ buniek váži približne 31 gramov, tvrdil, že z pôvodnej misky buniek možno vypestovať populáciu buniek vážiacu celkom až 22 miliónov ton.

III.
Priemysel zdravých a konečných vs. priemysel nenormálnych a nekonečných bunkových línií – ktorý je väčšie zlo?

Súbor dát: Bunkové línie používané pri produkcii vakcín
Názov bunkovej líniePrírastkové čísloRodičovská bunková líniaOdvodené bunkové línieDruh pôvodcu (slov.)Druh pôvodcu (lat.)Z hľadiska ľudského pôvodcuZ hľadiska etickosti získaniaSynonymáSkupinaTransformácie [1]Transfekcie [2]KategóriaTyp buniekPohlavie bunkyDospelosť buniek vzorkyVek buniek vzorkyPoznámkyPublikácieWeb
4647CVCL_4075//mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetickáContinuous kidney cell line No. 4647Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéneurčenédospelé/Group: Non-human primate cell line. PubMed=6495709
Mironova L.L., Kurbatov A.V., Grachev V.P., Kuznetsova N.V., Stobetskii V.I.
Continuous kidney cell line No. 4647 from an adult green monkey and its use in virological practice.
Vopr. Virusol. 29:503-506(1984)

PubMed=3445593
Mironova L.L., Shalunova N.V., Lomanova G.A., Nikolaeva M.A., Khapchaev I.K.
Characteristics of a bank of the heteroploid kidney cell line 4647 from the green monkey.
Vopr. Virusol. 32:740-743(1987)

PubMed=2175469
Isaenko A.A., Nemtsov I.V., Tsareva A.A.
A karyotype study of the cells of the African green monkey kidney cell line 4647 cultured long term in media with different sera.
Tsitologiia 32:736-740(1990)

PubMed=17500238
Skarnovich M.O., Radaeva I.F., Vdovichenko G.V., Nechaeva E.A., Sergeev A.A., Petrishchenko V.A., Pliasunov I.V., Shishkina L.N., Ternovoi V.A., Smetannikova M.A., Agafonov A.P., Sergeev A.N.
4647-cell culture for preparation of recombinant bivaccine against smallpox and hepatitis B.
Vopr. Virusol. 52:37-40(2007)
http://www.cellresource.cn/fdetail.aspx?id=529
A-549CVCL_0023ÁnoCVCL_UJ32 (A549 ATGL-KO) CVCL_VR73 (A549 dCas9-KRAB) CVCL_YZ46 (A549 DHODH-/-)
CVCL_JK07 (A549 EML4-ALK) CVCL_RT13 (A549 GFP-EGFR) CVCL_RQ89 (A549 GFP-STAT1)
CVCL_RX08 (A549 L2A6) CVCL_RX09 (A549 L2G9) CVCL_LB65 (A549 MX10)
CVCL_DF39 (A549 NucLight Green) CVCL_DF40 (A549 NucLight Red) CVCL_XY99 (A549 OS8)
CVCL_LI35 (A549 VIM RFP) CVCL_4V06 (A549(VM)28) CVCL_4V07 (A549(VP)28)
CVCL_XE67 (A549-5Fu) CVCL_XE68 (A549-Cas9-538) CVCL_IP03 (A549-CR)
CVCL_5I73 (A549-Dual) CVCL_XB31 (A549-EGFP) CVCL_QZ76 (A549-eGFP-Puro)
CVCL_XI06 (A549-ESM) CVCL_QZ77 (A549-Fluc-Neo/eGFP-Puro) CVCL_QZ78 (A549-Fluc-Neo/iRFP-Puro)
CVCL_QZ79 (A549-Fluc-Puro) CVCL_QZ80 (A549-hNIS-Neo) CVCL_QZ81 (A549-hNIS-Neo/eGFP-Puro)
CVCL_QZ82 (A549-hNIS-Neo/Fluc-Puro) CVCL_QZ83 (A549-hNIS-Neo/iRFP-Puro) CVCL_QZ84 (A549-iRFP-Neo)
CVCL_QZ85 (A549-iRFP-Puro) CVCL_J242 (A549-Luc) CVCL_5J13 (A549-luc-C8)
CVCL_UR31 (A549-Luc2) CVCL_XE69 (A549-Luc2-tdT-2) CVCL_XB30 (A549-mCherry)
CVCL_5I86 (A549-Red-FLuc) CVCL_W218 (A549-Taxol) CVCL_XB27 (A549-tdT)
CVCL_4Z15 (A549.EpoB40) CVCL_IY87 (A549/8) CVCL_YA87 (A549/Asc-1)
CVCL_H268 (A549/CPT) CVCL_JY87 (A549/GFP) CVCL_KS36 (A549/NFkB-luc)
CVCL_UJ49 (A549/SF) CVCL_W190 (A549/TXL10) CVCL_W191 (A549/TXL20)
CVCL_W192 (A549/TXL5) CVCL_ZX73 (A549L0) CVCL_RQ47 (A549rCDDP2000)
CVCL_U656 (AE1-2a) CVCL_8470 (AE1201) CVCL_KV97 (InCELL Hunter A549 EP300 Bromodomain)
CVCL_KV98 (InCELL Hunter A549 G9a Methyltransferase) CVCL_KV99 (InCELL Hunter A549 GLP Methyltransferase) CVCL_KW00 (InCELL Hunter A549 PRMT3 Methyltransferase)
CVCL_5992 (JHU-028) CVCL_W340 (K209) CVCL_ZI99 (LanthaScreen ATF2 (19-106) A549)
CVCL_YJ75 (LINTERNA A549) CVCL_A9P0 (NF-KappaB reporter (Luc)-A549) CVCL_5J44 (p53-RE-luc/A549)
CVCL_KW16 (PathHunter A549 IkappaB Degradation) CVCL_TZ89 (SL0003) CVCL_TZ90 (SL0006)
človekHomo sapiensľudskáetickáA 549; A549; NCI-A549; A549/ATCC; A549 ATCC; A549ATCC; hA549Bunková línia využívaná pri produkcii vakcín//Rakovinové bunkové líniepľúcny kacinómmužskédospelé58 rokovPart of: Cancer Cell Line Encyclopedia (CCLE) project.
Part of: COSMIC cell lines project.
Part of: ENCODE project common cell types; tier 2.
Part of: JFCR39 cancer cell line panel.
Part of: KuDOS 95 cell line panel.
Part of: MD Anderson Cell Lines Project.
Part of: Naval Biosciences Laboratory (NBL) collection (transferred to ATCC in 1982).
Part of: NCI-60 cancer cell line panel.
Part of: NCI-7 clinical proteomics reference material cell line panel.
Population: Caucasian.
Doubling time: 18 hours (in RPMI 1640 + 10% FBS), 37 hours (in ACL-3), 36 hours (in ACL-3+BSA) (PubMed=3940644); 27.0 hours (PubMed=8286010); 22 hours (PubMed=25984343); 23.9 hours (PubMed=29681454); 27 hours (from cell counting), 27 hours (from absorbance) (DOI=10.5897/IJBMBR2013.0154); 22.9 hours (NCI-DTP); ~28 hours (CLS); ~40 hours (DSMZ).
Microsatellite instability: Stable (MSS) (PubMed=12661003; Sanger).
Omics: Acetylation analysis by proteomics.
Omics: Array-based CGH.
Omics: CNV analysis.
Omics: Deep antibody staining analysis.
Omics: Deep exome analysis.
Omics: Deep membrane proteome analysis.
Omics: Deep phosphoproteome analysis.
Omics: Deep proteome analysis.
Omics: Deep quantitative proteome analysis.
Omics: Deep RNAseq analysis.
Omics: DNA methylation analysis.
Omics: Fluorescence phenotype profiling.
Omics: H3K4me3 ChIP-seq epigenome analysis.
Omics: H3K9ac ChIP-seq epigenome analysis.
Omics: lncRNA expression profiling.
Omics: Metabolome analysis.
Omics: Protein expression by reverse-phase protein arrays.
Omics: Proteome analysis by 2D-DE/MS.
Omics: shRNA library screening.
Omics: SNP array analysis.
Omics: Transcriptome analysis.
Omics: Virome analysis using proteomics.
Misspelling: A594; In PubMed=18227028.
Misspelling: A59; In PubMed=16354588.
PubMed=4357758; DOI=10.1093/jnci/51.5.1417
Giard D.J., Aaronson S.A., Todaro G.J., Arnstein P., Kersey J.H., Dosik H., Parks W.P.
In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors.
J. Natl. Cancer Inst. 51:1417-1423(1973)

PubMed=175022; DOI=10.1002/ijc.2910170110
Lieber M.M., Smith B.T., Szakal A., Nelson-Rees W.A., Todaro G.J.
A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells.
Int. J. Cancer 17:62-70(1976)

PubMed=327080; DOI=10.1093/jnci/59.1.221
Fogh J., Fogh J.M., Orfeo T.
One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.
J. Natl. Cancer Inst. 59:221-226(1977)

PubMed=833871; DOI=10.1093/jnci/58.2.209
Fogh J., Wright W.C., Loveless J.D.
Absence of HeLa cell contamination in 169 cell lines derived from human tumors.
J. Natl. Cancer Inst. 58:209-214(1977)

PubMed=842942; DOI=10.1164/arrd.1977.115.2.285
Smith B.T.
Cell line A549: a model system for the study of alveolar type II cell function.
Am. Rev. Respir. Dis. 115:285-293(1977)

PubMed=924690; DOI=10.1002/ijc.2910200505
Kerbel R.S., Pross H.F., Leibovitz A.
Analysis of established human carcinoma cell lines for lymphoreticular-associated membrane receptors.
Int. J. Cancer 20:673-679(1977)

PubMed=375235; DOI=10.1073/pnas.76.3.1288
Sherwin S.A., Sliski A.H., Todaro G.J.
Human melanoma cells have both nerve growth factor and nerve growth factor-specific receptors on their cell surfaces.
Proc. Natl. Acad. Sci. U.S.A. 76:1288-1292(1979)

PubMed=6256643; DOI=10.1038/288724a0
Day R.S. III, Ziolkowski C.H.J., Scudiero D.A., Meyer S.A., Lubiniecki A.S., Girardi A.J., Galloway S.M., Bynum G.D.
Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains.
Nature 288:724-727(1980)

PubMed=22282976; DOI=10.1093/carcin/1.1.21
Day R.S. III, Ziolkowski C.H.J., Scudiero D.A., Meyer S.A., Mattern M.R.
Human tumor cell strains defective in the repair of alkylation damage.
Carcinogenesis 1:21-32(1980)

PubMed=6935474; DOI=10.1093/jnci/66.2.239
Wright W.C., Daniels W.P., Fogh J.
Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.
J. Natl. Cancer Inst. 66:239-247(1981)

PubMed=7459858
Rousset M., Zweibaum A., Fogh J.
Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.
Cancer Res. 41:1165-1170(1981)

PubMed=6954533; DOI=10.1073/pnas.79.7.2194
Westin E.H., Gallo R.C., Arya S.K., Eva A., Souza L.M., Baluda M.A., Aaronson S.A., Wong-Staal F.
Differential expression of the amv gene in human hematopoietic cells.
Proc. Natl. Acad. Sci. U.S.A. 79:2194-2198(1982)

PubMed=7065527; DOI=10.1164/arrd.1982.125.2.222
Hay R.J., Williams C.D., Macy M.L., Lavappa K.S.
Cultured cell lines for research on pulmonary physiology available through the American Type Culture Collection.
Am. Rev. Respir. Dis. 125:222-232(1982)

PubMed=6825208; DOI=10.1093/carcin/4.2.199
Yarosh D.B., Foote R.S., Mitra S., Day R.S. III
Repair of O6-methylguanine in DNA by demethylation is lacking in Mer- human tumor cell strains.
Carcinogenesis 4:199-205(1983)

PubMed=6148444; DOI=10.1093/jnci/73.4.801
Morstyn G., Russo A., Carney D.N., Karawya E., Wilson S.H., Mitchell J.B.
Heterogeneity in the radiation survival curves and biochemical properties of human lung cancer cell lines.
J. Natl. Cancer Inst. 73:801-807(1984)

PubMed=6500159; DOI=10.1159/000163283
Gershwin M.E., Lentz D., Owens R.B.
Relationship between karyotype of tissue culture lines and tumorigenicity in nude mice.
Exp. Cell Biol. 52:361-370(1984)

PubMed=3518877; DOI=10.3109/07357908609038260
Fogh J.
Human tumor lines for cancer research.
Cancer Invest. 4:157-184(1986)

PubMed=3940644
Brower M., Carney D.N., Oie H.K., Gazdar A.F., Minna J.D.
Growth of cell lines and clinical specimens of human non-small cell lung cancer in a serum-free defined medium.
Cancer Res. 46:798-806(1986)

PubMed=3945555; DOI=10.1093/nar/14.2.843
Valenzuela D.M., Groffen J.
Four human carcinoma cell lines with novel mutations in position 12 of c-K-ras oncogene.
Nucleic Acids Res. 14:843-852(1986)

PubMed=3129183
Hubbard W.C., Alley M.C., McLemore T.L., Boyd M.R.
Evidence for thromboxane biosynthesis in established cell lines derived from human lung adenocarcinomas.
Cancer Res. 48:2674-2677(1988)

PubMed=3335022
Alley M.C., Scudiero D.A., Monks A., Hursey M.L., Czerwinski M.J., Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
Cancer Res. 48:589-601(1988)

PubMed=3413074; DOI=10.1073/pnas.85.16.6042
Pereira-Smith O.M., Smith J.R.
Genetic analysis of indefinite division in human cells: identification of four complementation groups.
Proc. Natl. Acad. Sci. U.S.A. 85:6042-6046(1988)

PubMed=2388294; DOI=10.1093/jnci/82.17.1420
McLemore T.L., Litterst C.L., Coudert B.P., Liu M.C., Hubbard W.C., Adelberg S., Czerwinski M.J., McMahon N.A., Eggleston J.C., Boyd M.R.
Metabolic activation of 4-ipomeanol in human lung, primary pulmonary carcinomas, and established human pulmonary carcinoma cell lines.
J. Natl. Cancer Inst. 82:1420-1426(1990)

PubMed=1855224
Lehman T.A., Bennett W.P., Metcalf R.A., Welsh J.A., Ecker J., Modali R.V., Ullrich S., Romano J.W., Appella E., Testa J.R., Gerwin B.I., Harris C.C.
p53 mutations, ras mutations, and p53-heat shock 70 protein complexes in human lung carcinoma cell lines.
Cancer Res. 51:4090-4096(1991)

PubMed=2041050; DOI=10.1093/jnci/83.11.757
Monks A., Scudiero D.A., Skehan P., Shoemaker R.H., Paull K., Vistica D.T., Hose C., Langley J., Cronise P., Vaigro-Wolff A., Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.
Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.
J. Natl. Cancer Inst. 83:757-766(1991)

PubMed=8286010
Kiura K., Watarai S., Shibayama T., Ohnoshi T., Kimura I., Yasuda T.
Inhibitory effects of cholera toxin on in vitro growth of human lung cancer cell lines.
Anticancer Drug Des. 8:417-428(1993)

PubMed=7736387; DOI=10.1002/1097-0142(19950515)75:10<2442::AID-CNCR2820751009>3.0.CO;2-Q
Campling B.G., Sarda I.R., Baer K.A., Pang S.C., Baker H.M., Lofters W.S., Flynn T.G.
Secretion of atrial natriuretic peptide and vasopressin by small cell lung cancer.
Cancer 75:2442-2451(1995)

PubMed=8626706; DOI=10.1074/jbc.271.19.11477
Quinn K.A., Treston A.M., Unsworth E.J., Miller M.-J., Vos M., Grimley C., Battey J., Mulshine J.L., Cuttitta F.
Insulin-like growth factor expression in human cancer cell lines.
J. Biol. Chem. 271:11477-11483(1996)

PubMed=9023415; DOI=10.1006/cimm.1996.1062
Seki N., Hoshino T., Kikuchi M., Hayashi A., Itoh K.
HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer.
Cell. Immunol. 175:101-110(1997)

PubMed=9178645; DOI=10.1006/cimm.1997.1108
Nakao M., Sata M., Saitsu H., Yutani S., Kawamoto M., Kojiro M., Itoh K.
CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma.
Cell. Immunol. 177:176-181(1997)

PubMed=9290701; DOI=10.1002/(SICI)1098-2744(199708)19:4<243::AID-MC5>3.0.CO;2-D
Jia L.-Q., Osada M., Ishioka C., Gamo M., Ikawa S., Suzuki T., Shimodaira H., Niitani T., Kudo T., Akiyama M., Kimura N., Matsuo M., Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.
Screening the p53 status of human cell lines using a yeast functional assay.
Mol. Carcinog. 19:243-253(1997)

PubMed=9538136; DOI=10.3892/ijo.12.5.1103
Takaki T., Hiraki A., Uenaka A., Gomi S., Itoh K., Udono H., Shibuya A., Tsuji T., Sekiguchi S., Nakayama E.
Variable expression on lung cancer cell lines of HLA-A2-binding MAGE- 3 peptide recognized by cytotoxic T lymphocytes.
Int. J. Oncol. 12:1103-1109(1998)

PubMed=9636188; DOI=10.1073/pnas.95.13.7556
Kaplan D.H., Shankaran V., Dighe A.S., Stockert E., Aguet M., Old L.J., Schreiber R.D.
Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice.
Proc. Natl. Acad. Sci. U.S.A. 95:7556-7561(1998)

PubMed=9649128; DOI=10.1038/bjc.1998.361
Yi S., Chen J.-R., Viallet J., Schwall R.H., Nakamura T., Tsao M.-S.
Paracrine effects of hepatocyte growth factor/scatter factor on non-small-cell lung carcinoma cell lines.
Br. J. Cancer 77:2162-2170(1998)

PubMed=10358721; DOI=10.18926/AMO/31626
Matsushita A., Tabata M., Ueoka H., Kiura K., Shibayama T., Aoe K., Kohara H., Harada M.
Establishment of a drug sensitivity panel using human lung cancer cell lines.
Acta Med. Okayama 53:67-75(1999)

PubMed=10700174; DOI=10.1038/73432
Ross D.T., Scherf U., Eisen M.B., Perou C.M., Rees C., Spellman P.T., Iyer V., Jeffrey S.S., van de Rijn M., Waltham M., Pergamenschikov A., Lee J.C.F., Lashkari D., Shalon D., Myers T.G., Weinstein J.N., Botstein D., Brown P.O.
Systematic variation in gene expression patterns in human cancer cell lines.
Nat. Genet. 24:227-235(2000)

PubMed=11005564; DOI=10.1038/sj.neo.7900094
Kohno T., Sato T., Takakura S., Takei K., Inoue K., Nishioka M., Yokota J.
Mutation and expression of the DCC gene in human lung cancer.
Neoplasia 2:300-305(2000)

PubMed=11369051; DOI=10.1016/S0165-4608(00)00363-0
Luk C., Tsao M.-S., Bayani J., Shepherd F., Squire J.A.
Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization.
Cancer Genet. Cytogenet. 125:87-99(2001)

PubMed=11958134
Zhan X.-Q., Guan Y.-J., Li C., Chen Z.-C., Xie J.-Y., Chen P., Liang S.-P.
Differential proteomic analysis of human lung adenocarcinoma cell line A-549 and of normal cell line HBE.
Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao 34:50-56(2002)

PubMed=12661003; DOI=10.1002/gcc.10196
Seitz S., Wassmuth P., Plaschke J., Schackert H.K., Karsten U., Santibanez-Koref M.-F., Schlag P.M., Scherneck S.
Identification of microsatellite instability and mismatch repair gene mutations in breast cancer cell lines.
Genes Chromosomes Cancer 37:29-35(2003)

PubMed=12794755; DOI=10.1002/ijc.11184
Endoh H., Yatabe Y., Shimizu S., Tajima K., Kuwano H., Takahashi T., Mitsudomi T.
RASSF1A gene inactivation in non-small cell lung cancer and its clinical implication.
Int. J. Cancer 106:45-51(2003)

PubMed=14581340
Yokoi S., Yasui K., Iizasa T., Imoto I., Fujisawa T., Inazawa J.
TERC identified as a probable target within the 3q26 amplicon that is detected frequently in non-small cell lung cancers.
Clin. Cancer Res. 9:4705-4713(2003)

PubMed=15746151; DOI=10.1093/hmg/ddi092
Izumi H., Inoue J., Yokoi S., Hosoda H., Shibata T., Sunamori M., Hirohashi S., Inazawa J., Imoto I.
Frequent silencing of DBC1 is by genetic or epigenetic mechanisms in non-small cell lung cancers.
Hum. Mol. Genet. 14:997-1007(2005)

PubMed=15748285; DOI=10.1186/1479-5876-3-11
Adams S., Robbins F.-M., Chen D., Wagage D., Holbeck S.L., Morse H.C. III, Stroncek D., Marincola F.M.
HLA class I and II genotype of the NCI-60 cell lines.
J. Transl. Med. 3:11-11(2005)

PubMed=15900046; DOI=10.1093/jnci/dji133
Mashima T., Oh-hara T., Sato S., Mochizuki M., Sugimoto Y., Yamazaki K., Hamada J., Tada M., Moriuchi T., Ishikawa Y., Kato Y., Tomoda H., Yamori T., Tsuruo T.
p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.
J. Natl. Cancer Inst. 97:765-777(2005)

PubMed=15999539
Matsumura T., Takigawa N., Kiura K., Shibayama T., Chikamori M., Tabata M., Ueoka H., Tanimoto M.
Determinants of cisplatin and irinotecan activities in human lung adenocarcinoma cells: evidence of cisplatin accumulation and topoisomerase I activity.
In Vivo 19:717-721(2005)

PubMed=17088437; DOI=10.1158/1535-7163.MCT-06-0433
Ikediobi O.N., Davies H., Bignell G.R., Edkins S., Stevens C., O'Meara S., Santarius T., Avis T., Barthorpe S., Brackenbury L., Buck G., Butler A., Clements J., Cole J., Dicks E., Forbes S., Gray K., Halliday K., Harrison R., Hills K., Hinton J., Hunter C., Jenkinson A., Jones D., Kosmidou V., Lugg R., Menzies A., Mironenko T., Parker A., Perry J., Raine K., Richardson D., Shepherd R., Small A., Smith R., Solomon H., Stephens P., Teague J.W., Tofts C., Varian J., Webb T., West S., Widaa S., Yates A., Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.
Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.
Mol. Cancer Ther. 5:2606-2612(2006)

PubMed=17331233; DOI=10.1186/1471-2164-8-62
Nymark P., Lindholm P.M., Korpela M.V., Lahti L., Ruosaari S., Kaski S., Hollmen J., Anttila S., Kinnula V.L., Knuutila S.
Gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines.
BMC Genomics 8:62-62(2007)

PubMed=17332333; DOI=10.1158/0008-5472.CAN-06-3339
Okabe T., Okamoto I., Tamura K., Terashima M., Yoshida T., Satoh T., Takada M., Fukuoka M., Nakagawa K.
Differential constitutive activation of the epidermal growth factor receptor in non-small cell lung cancer cells bearing EGFR gene mutation and amplification.
Cancer Res. 67:2046-2053(2007)

PubMed=17511773; DOI=10.1111/j.1349-7006.2007.00507.x
Fukuyama T., Ichiki Y., Yamada S., Shigematsu Y., Baba T., Nagata Y., Mizukami M., Sugaya M., Takenoyama M., Hanagiri T., Sugio K., Yasumoto K.
Cytokine production of lung cancer cell lines: correlation between their production and the inflammatory/immunological responses both in vivo and in vitro.
Cancer Sci. 98:1048-1054(2007)

PubMed=18083107; DOI=10.1016/j.cell.2007.11.025
Rikova K., Guo A., Zeng Q., Possemato A., Yu J., Haack H., Nardone J., Lee K., Reeves C., Li Y., Hu Y., Tan Z., Stokes M., Sullivan L., Mitchell J., Wetzel R., Macneill J., Ren J.M., Yuan J., Bakalarski C.E., Villen J., Kornhauser J.M., Smith B., Li D., Zhou X., Gygi S.P., Gu T.-L., Polakiewicz R.D., Rush J., Comb M.J.
Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.
Cell 131:1190-1203(2007)

PubMed=19372543; DOI=10.1158/1535-7163.MCT-08-0921
Lorenzi P.L., Reinhold W.C., Varma S., Hutchinson A.A., Pommier Y., Chanock S.J., Weinstein J.N.
DNA fingerprinting of the NCI-60 cell line panel.
Mol. Cancer Ther. 8:713-724(2009)

PubMed=19472407; DOI=10.1002/humu.21028
Blanco R., Iwakawa R., Tang M., Kohno T., Angulo B., Pio R., Montuenga L.M., Minna J.D., Yokota J., Sanchez-Cespedes M.
A gene-alteration profile of human lung cancer cell lines.
Hum. Mutat. 30:1199-1206(2009)

PubMed=19608861; DOI=10.1126/science.1175371
Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M., Walther T.C., Olsen J.V., Mann M.
Lysine acetylation targets protein complexes and co-regulates major cellular functions.
Science 325:834-840(2009)

PubMed=19657000
Rubporn A., Srisomsap C., Subhasitanont P., Chokchaichamnankit D., Chiablaem K., Svasti J., Sangvanich P.
Comparative proteomic analysis of lung cancer cell line and lung fibroblast cell line.
Cancer Genomics Proteomics 6:229-237(2009)

PubMed=20164919; DOI=10.1038/nature08768
Bignell G.R., Greenman C.D., Davies H., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F., Campbell P.J., Futreal P.A., Stratton M.R.
Signatures of mutation and selection in the cancer genome.
Nature 463:893-898(2010)

PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458
Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Cancer Res. 70:2158-2164(2010)

PubMed=20545000; DOI=10.3724/SP.J.1141.2010.02113
Peng K.-J., Wang J.-H., Su W.-T., Wang X.-C., Yang F.-T., Nie W.-H.
Characterization of two human lung adenocarcinoma cell lines by reciprocal chromosome painting.
Dong Wu Xue Yan Jiu 31:113-121(2010)

PubMed=21060948; DOI=10.1039/c0mb00055h
Yu G., Xiao C.-L., Lu C.-H., Jia H.-T., Ge F., Wang W., Yin X.-F., Jia H.-L., He J.-X., He Q.-Y.
Phosphoproteome profile of human lung cancer cell line A549.
Mol. Biosyst. 7:472-479(2011)

PubMed=22068913; DOI=10.1073/pnas.1111840108
Gillet J.-P., Calcagno A.M., Varma S., Marino M., Green L.J., Vora M.I., Patel C., Orina J.N., Eliseeva T.A., Singal V., Padmanabhan R., Davidson B., Ganapathi R., Sood A.K., Rueda B.R., Ambudkar S.V., Gottesman M.M.
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.
Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011)

PubMed=22278370; DOI=10.1074/mcp.M111.014050
Geiger T., Wehner A., Schaab C., Cox J., Mann M.
Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.
Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012)

PubMed=22313637; DOI=10.4161/cbt.19238
Takata M., Chikumi H., Miyake N., Adachi K., Kanamori Y., Yamasaki A., Igishi T., Burioka N., Nanba E., Shimizu E.
Lack of AKT activation in lung cancer cells with EGFR mutation is a novel marker of cetuximab sensitivity.
Cancer Biol. Ther. 13:369-378(2012)

PubMed=22336246; DOI=10.1016/j.bmc.2012.01.017
Kong D., Yamori T.
JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.
Bioorg. Med. Chem. 20:1947-1951(2012)

PubMed=22384151; DOI=10.1371/journal.pone.0032096
Lee J.-S., Kim Y.K., Kim H.J., Hajar S., Tan Y.L., Kang N.-Y., Ng S.H., Yoon C.N., Chang Y.-T.
Identification of cancer cell-line origins using fluorescence image-based phenomic screening.
PLoS ONE 7:E32096-E32096(2012)

PubMed=22460905; DOI=10.1038/nature11003
Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.K., Yu J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Nature 483:603-607(2012)

PubMed=22481983; DOI=10.2174/1874091X01206010016
Chauhan V., Howland M., Wilkins R.
Effects of alpha-particle radiation on microRNA responses in human cell-lines.
Open Biochem. J. 6:16-22(2012)

PubMed=22576795; DOI=10.3892/or.2012.1763
Ashinuma H., Takiguchi Y., Kitazono S., Kitazono-Saitoh M., Kitamura A., Chiba T., Tada Y., Kurosu K., Sakaida E., Sekine I., Tanabe N., Iwama A., Yokosuka O., Tatsumi K.
Antiproliferative action of metformin in human lung cancer cell lines.
Oncol. Rep. 28:8-14(2012)

PubMed=22628656; DOI=10.1126/science.1218595
Jain M., Nilsson R., Sharma S., Madhusudhan N., Kitami T., Souza A.L., Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.
Science 336:1040-1044(2012)

PubMed=22961666; DOI=10.1158/2159-8290.CD-12-0112
Byers L.A., Wang J., Nilsson M.B., Fujimoto J., Saintigny P., Yordy J., Giri U., Peyton M., Fan Y.H., Diao L., Masrorpour F., Shen L., Liu W., Duchemann B., Tumula P., Bhardwaj V., Welsh J., Weber S., Glisson B.S., Kalhor N., Wistuba I.I., Girard L., Lippman S.M., Mills G.B., Coombes K.R., Weinstein J.N., Minna J.D., Heymach J.V.
Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1.
Cancer Discov. 2:798-811(2012)

DOI=10.5897/IJBMBR2013.0154
Iloki Assanga S.B., Gil-Salido A.A., Lewis Lujan L.M., Rosas-Durazo A., Acosta-Silva A.L., Rivera-Castaneda E.G., Rubio-Pino J.L.
Cell growth curves for different cell lines and their relationship with biological activities.
Int. J. Biotechnol. Mol. Biol. Res. 4:60-70(2013)

PubMed=23325432; DOI=10.1101/gr.147942.112
Varley K.E., Gertz J., Bowling K.M., Parker S.L., Reddy T.E., Pauli-Behn F., Cross M.K., Williams B.A., Stamatoyannopoulos J.A., Crawford G.E., Absher D.M., Wold B.J., Myers R.M.
Dynamic DNA methylation across diverse human cell lines and tissues.
Genome Res. 23:555-567(2013)

PubMed=23404217; DOI=10.1007/s11626-013-9581-9
Chang D., Xu H.-W., Guo Y.-H., Jiang X., Liu Y., Li K.-L., Pan C.-X., Yuan M., Wang J.-F., Li T.-Z., Liu C.-T.
Simulated microgravity alters the metastatic potential of a human lung adenocarcinoma cell line.
In Vitro Cell. Dev. Biol. Anim. 49:170-177(2013)

PubMed=23856246; DOI=10.1158/0008-5472.CAN-12-3342
Abaan O.D., Polley E.C., Davis S.R., Zhu Y.J., Bilke S., Walker R.L., Pineda M., Gindin Y., Jiang Y., Reinhold W.C., Holbeck S.L., Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.
The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.
Cancer Res. 73:4372-4382(2013)

PubMed=23933261; DOI=10.1016/j.celrep.2013.07.018
Moghaddas Gholami A., Hahne H., Wu Z., Auer F.J., Meng C., Wilhelm M., Kuster B.
Global proteome analysis of the NCI-60 cell line panel.
Cell Rep. 4:609-620(2013)

PubMed=24135919; DOI=10.1038/ncomms3617
Balbin O.A., Prensner J.R., Sahu A., Yocum A., Shankar S., Malik R., Fermin D., Dhanasekaran S.M., Chandler B., Thomas D., Beer D.G., Cao X., Nesvizhskii A.I., Chinnaiyan A.M.
Reconstructing targetable pathways in lung cancer by integrating diverse omics data.
Nat. Commun. 4:2617-2617(2013)

PubMed=24279929; DOI=10.1186/2049-3002-1-20
Dolfi S.C., Chan L.L.-Y., Qiu J., Tedeschi P.M., Bertino J.R., Hirshfield K.M., Oltvai Z.N., Vazquez A.
The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.
Cancer Metab. 1:20-20(2013)

PubMed=24618588; DOI=10.1371/journal.pone.0091433
Chernobrovkin A.L., Zubarev R.A.
Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.
PLoS ONE 9:E91433-E91433(2014)

PubMed=24670534; DOI=10.1371/journal.pone.0092047
Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.
High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.
PLoS ONE 9:E92047-E92047(2014)

PubMed=25120651; DOI=10.3892/ol.2014.2234
Suzuki M., Ikeda K., Shiraishi K., Eguchi A., Mori T., Yoshimoto K., Shibata H., Ito T., Baba Y., Baba H.
Aberrant methylation and silencing of IRF8 expression in non-small cell lung cancer.
Oncol. Lett. 8:1025-1030(2014)

PubMed=25475639; DOI=10.5731/pdajpst.2014.01027
Shabram P., Kolman J.L.
Evaluation of A549 as a new vaccine cell substrate: digging deeper with massively parallel sequencing.
PDA J. Pharm. Sci. Technol. 68:639-650(2014)

PubMed=25960936; DOI=10.4161/21624011.2014.954893
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
OncoImmunology 3:E954893-E954893(2014)

PubMed=25984343; DOI=10.1038/sdata.2014.35
Cowley G.S., Weir B.A., Vazquez F., Tamayo P., Scott J.A., Rusin S., East-Seletsky A., Ali L.D., Gerath W.F.J., Pantel S.E., Lizotte P.H., Jiang G., Hsiao J., Tsherniak A., Dwinell E., Aoyama S., Okamoto M., Harrington W., Gelfand E., Green T.M., Tomko M.J., Gopal S., Wong T.C., Li H., Howell S., Stransky N., Liefeld T., Jang D., Bistline J., Hill Meyers B., Armstrong S.A., Anderson K.C., Stegmaier K., Reich M., Pellman D., Boehm J.S., Mesirov J.P., Golub T.R., Root D.E., Hahn W.C.
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Sci. Data 1:140035-140035(2014)

PubMed=25485619; DOI=10.1038/nbt.3080
Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z., Liu H., Degenhardt J., Mayba O., Gnad F., Liu J., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.
A comprehensive transcriptional portrait of human cancer cell lines.
Nat. Biotechnol. 33:306-312(2015)

PubMed=26202522; DOI=10.1021/acs.jproteome.5b00477
Kitata R.B., Dimayacyac-Esleta B.R., Choong W.-K., Tsai C.-F., Lin T.-D., Tsou C.-C., Weng S.-H., Chen Y.-J., Yang P.-C., Arco S.D., Nesvizhskii A.I., Sung T.-Y., Chen Y.-J.
Mining missing membrane proteins by high-pH reverse-phase stagetip fractionation and multiple reaction monitoring mass spectrometry.
J. Proteome Res. 14:3658-3669(2015)

PubMed=26554430; DOI=10.1021/acs.analchem.5b03639
Dimayacyac-Esleta B.R., Tsai C.-F., Kitata R.B., Lin P.-Y., Choong W.-K., Lin T.-D., Wang Y.-T., Weng S.-H., Yang P.-C., Arco S.D., Sung T.-Y., Chen Y.-J.
Rapid high-pH reverse phase stagetip for sensitive small-scale membrane proteomic profiling.
Anal. Chem. 87:12016-12023(2015)

PubMed=27377824; DOI=10.1038/sdata.2016.52
Mestdagh P., Lefever S., Volders P.-J., Derveaux S., Hellemans J., Vandesompele J.
Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.
Sci. Data 3:160052-160052(2016)

PubMed=27397505; DOI=10.1016/j.cell.2016.06.017
Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X., Egan R.K., Liu Q., Mironenko T., Mitropoulos X., Richardson L., Wang J., Zhang T., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
A landscape of pharmacogenomic interactions in cancer.
Cell 166:740-754(2016)

PubMed=27807467; DOI=10.1186/s13100-016-0078-4
Zampella J.G., Rodic N., Yang W.R., Huang C.R.L., Welch J., Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.
A map of mobile DNA insertions in the NCI-60 human cancer cell panel.
Mob. DNA 7:20-20(2016)

PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005
Li J., Zhao W., Akbani R., Liu W., Ju Z., Ling S., Vellano C.P., Roebuck P., Yu Q., Eterovic A.K., Byers L.A., Davies M.A., Deng W., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y., Mills G.B., Liang H.
Characterization of human cancer cell lines by reverse-phase protein arrays.
Cancer Cell 31:225-239(2017)

PubMed=28601559; DOI=10.1016/j.cels.2017.05.009
Bekker-Jensen D.B., Kelstrup C.D., Batth T.S., Larsen S.C., Haldrup C., Bramsen J.B., Sorensen K.D., Hoyer S., Orntoft T.F., Andersen C.L., Nielsen M.L., Olsen J.V.
An optimized shotgun strategy for the rapid generation of comprehensive human proteomes.
Cell Syst. 4:587-599.e4(2017)

PubMed=28746345; DOI=10.1371/journal.pone.0181081
Sarin N., Engel F., Kalayda G.V., Mannewitz M., Cinatl J. Jr., Rothweiler F., Michaelis M., Saafan H., Ritter C.A., Jaehde U., Frotschl R.
Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest.
PLoS ONE 12:E0181081-E0181081(2017)

PubMed=29444439; DOI=10.1016/j.celrep.2018.01.051
Yuan T.L., Amzallag A., Bagni R., Yi M., Afghani S., Burgan W., Fer N., Strathern L.A., Powell K., Smith B., Waters A.M., Drubin D., Thomson T., Liao R., Greninger P., Stein G.T., Murchie E., Cortez E., Egan R.K., Procter L., Bess M., Cheng K.T., Lee C.-S., Lee L.C., Fellmann C., Stephens R., Luo J., Lowe S.W., Benes C.H., McCormick F.
Differential effector engagement by oncogenic KRAS.
Cell Rep. 22:1889-1902(2018)

PubMed=29457907; DOI=10.1021/acs.jproteome.7b00782
Tomin T., Fritz K., Gindlhuber J., Waldherr L., Pucher B., Thallinger G.G., Nomura D.K., Schittmayer M., Birner-Gruenberger R.
Deletion of adipose triglyceride lipase links triacylglycerol accumulation to a more-aggressive phenotype in A549 lung carcinoma cells.
J. Proteome Res. 17:1415-1425(2018)

PubMed=29681454; DOI=10.1016/j.cell.2018.03.028
McMillan E.A., Ryu M.-J., Diep C.H., Mendiratta S., Clemenceau J.R., Vaden R.M., Kim J.-H., Motoyaji T., Covington K.R., Peyton M., Huffman K., Wu X.-F., Girard L., Sung Y., Chen P.-H., Mallipeddi P.L., Lee J.Y., Hanson J., Voruganti S., Yu Y., Park S., Sudderth J., DeSevo C., Muzny D.M., Doddapaneni H., Gazdar A., Gibbs R.A., Hwang T.-H., Heymach J.V., Wistuba I., Coombes K.R., Williams N.S., Wheeler D.A., MacMillan J.B., Deberardinis R.J., Roth M.G., Posner B.A., Minna J.D., Kim H.S., White M.A.
Chemistry-first approach for nomination of personalized treatment in lung cancer.
Cell 173:864-878.e29(2018)

PubMed=29718670; DOI=10.1021/acs.jproteome.8b00165
Clark D.J., Hu Y., Bocik W., Chen L., Schnaubelt M., Roberts R., Shah P., Whiteley G., Zhang H.
Evaluation of NCI-7 cell line panel as a reference material for clinical proteomics.
J. Proteome Res. 17:2205-2215(2018)

PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747
Dutil J., Chen Z., Monteiro A.N., Teer J.K., Eschrich S.A.
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Cancer Res. 79:1263-1273(2019)

PubMed=31068700; DOI=10.1038/s41586-019-1186-3
Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. III, Barretina J., Gelfand E.T., Bielski C.M., Li H., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Nature 569:503-508(2019)

PubMed=31978347; DOI=10.1016/j.cell.2019.12.023
Nusinow D.P., Szpyt J., Ghandi M., Rose C.M., McDonald E.R. III, Kalocsay M., Jane-Valbuena J., Gelfand E., Schweppe D.K., Jedrychowski M., Golji J., Porter D.A., Rejtar T., Wang Y.K., Kryukov G.V., Stegmeier F., Erickson B.K., Garraway L.A., Sellers W.R., Gygi S.P.
Quantitative proteomics of the Cancer Cell Line Encyclopedia.
Cell 180:387-402.e16(2020)
https://en.wikipedia.org/wiki/A549_cell
AGE1.CRCVCL_S509ÁnoCVCL_S508 (AGE1.CR.pIX)kačica pižmováCairina moschata zvieraciaetickáCR; CR.HSBunková línia využívaná pri produkcii vakcínNCBI_TaxID; 28285; Adenovirus 5 [E1A/E1B]/Transformované bunkové línie/neurčenéembryonálne/Group: Serum/protein free medium cell line.
From: ProBioGen AG; Berlin; Germany.
Doubling time: 23 hours (PubMed=19531390).
Transformant: NCBI_TaxID; 28285; Adenovirus 5 [E1A/E1B].
PubMed=19071186; DOI=10.1016/j.vaccine.2008.11.066
Jordan I., Vos A., Beilfuss S., Neubert A., Breul S., Sandig V.
An avian cell line designed for production of highly attenuated viruses.
Vaccine 27:748-756(2009)

PubMed=19531390; DOI=10.1016/j.vaccine.2009.05.083
Lohr V., Rath A., Genzel Y., Jordan I., Sandig V., Reichl U.
New avian suspension cell lines provide production of influenza virus and MVA in serum-free media: studies on growth, metabolism and virus propagation.
Vaccine 27:4975-4982(2009)

CLPUB00344
Ogorek C.
Characterization of the N-glycosylation profile of the new avian cell line AGE1.CR and the modification of fucosylation.
Thesis PhD (2012), Freien Universitat Berlin, Germany

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)

PubMed=26814192; DOI=10.1080/03079457.2016.1138280
Jordan I., John K., Howing K., Lohr V., Penzes Z., Gubucz-Sombor E., Fu Y., Gao P., Harder T., Zadori Z., Sandig V.
Continuous cell lines from the Muscovy duck as potential replacement for primary cells in the production of avian vaccines.
Avian Pathol. 45:137-155(2016)
https://www.probiogen.de/virus-production-cell-lines.html
AGE1.CR.pIXCVCL_S508 CVCL_S509 (AGE1.CR)/kačica pižmováCairina moschata zvieraciaetickáCR.pIX; CR.MCXBunková línia využívaná pri produkcii vakcín NCBI_TaxID; 28285; Adenovirus 5 [E1A/E1B]UniProtKB; P03281; Adenovirus 5 pIXTransformované bunkové línie/neurčenéembryonálne/Group: Bird cell line.
Group: Serum/protein free medium cell line.
From: ProBioGen AG; Berlin; Germany.
Characteristics: Permissive for a wide spectrum of animal and human viruses including influenza (broad strain spectrum), rabies virus, Newcastle disease virus (NDV), duck and goose parvovirus, egg drop syndrome virus (EDS), infectious bursal disease virus (IBDV), turkey rhinotracheitis virus (TRT), Marek disease virus (MDV), vesicular stomatitis virus (VSV) and herpesvirus of turkey (HVT) (ProBioGen).
Doubling time: 35 hours (PubMed=19531390).
PubMed=19071186; DOI=10.1016/j.vaccine.2008.11.066
Jordan I., Vos A., Beilfuss S., Neubert A., Breul S., Sandig V.
An avian cell line designed for production of highly attenuated viruses.
Vaccine 27:748-756(2009)

PubMed=19531390; DOI=10.1016/j.vaccine.2009.05.083
Lohr V., Rath A., Genzel Y., Jordan I., Sandig V., Reichl U.
New avian suspension cell lines provide production of influenza virus and MVA in serum-free media: studies on growth, metabolism and virus propagation.
Vaccine 27:4975-4982(2009)

CLPUB00344
Ogorek C.
Characterization of the N-glycosylation profile of the new avian cell line AGE1.CR and the modification of fucosylation.
Thesis PhD (2012), Freien Universitat Berlin, Germany

PubMed=25077436; DOI=10.1186/1472-6750-14-72
Lohr V., Hadicke O., Genzel Y., Jordan I., Buntemeyer H., Klamt S., Reichl U.
The avian cell line AGE1.CR.pIX characterized by metabolic flux analysis.
BMC Biotechnol. 14:72-72(2014)

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)

PubMed=26814192; DOI=10.1080/03079457.2016.1138280
Jordan I., John K., Howing K., Lohr V., Penzes Z., Gubucz-Sombor E., Fu Y., Gao P., Harder T., Zadori Z., Sandig V.
Continuous cell lines from the Muscovy duck as potential replacement for primary cells in the production of avian vaccines.
Avian Pathol. 45:137-155(2016)
https://www.probiogen.de/virus-production-cell-lines.html
AGE1.CSCVCL_S510//kačica pižmováCairina moschata zvieraciaetickáCSBunková línia využívaná pri produkcii vakcínNCBI_TaxID; 28285; Adenovirus 5 [E1A/E1B]./Transformované bunkové línie/neurčenéembryonálne/Group: Bird cell line.From: ProBioGen AG; Berlin; Germany.Transformant: NCBI_TaxID; 28285; Adenovirus 5 [E1A/E1B].PubMed=19071186; DOI=10.1016/j.vaccine.2008.11.066
Jordan I., Vos A., Beilfuss S., Neubert A., Breul S., Sandig V.
An avian cell line designed for production of highly attenuated viruses.
Vaccine 27:748-756(2009)
https://www.probiogen.de/virus-production-cell-lines.html
BA3CVCL_HF39//kura bankivskáGallus galluszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Indukované pluripotentné kmeňové bunky/neurčenéembryonálne11 fetálnych dníGroup: Bird cell line.
Doubling time: 21 hours (PubMed=26586283); 24-36 hours (Kerafast).
PubMed=26586283; DOI=10.1016/j.biologicals.2015.09.002
Shittu I., Zhu Z.-Y., Lu Y.-Q., Hutcheson J.M., Stice S.L., West F.D., Donadeu M., Dungu B., Fadly A.M., Zavala G., Ferguson-Noel N., Afonso C.L.
Development, characterization and optimization of a new suspension chicken-induced pluripotent cell line for the production of Newcastle disease vaccine.
Biologicals 44:24-32(2016)
/
BHK-21CVCL_1914ÁnoCVCL_1915 (BHK-21 clone 13) CVCL_HB78 (BHK-21/WI-2) CVCL_W329 (BHK-HVJ)škrečok zlatýMesocricetus auratuszvieraciaetickáBHK 21; BHK21; Baby Hamster Kidney-21; Baby Hamster Kidney 21; Baby Hamster Kidney from litter No. 21; BHKBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovémužskédospelé1 deňGroup: Space-flown cell line (cellonaut).
Part of: Naval Biosciences Laboratory (NBL) collection (transferred to ATCC in 1982).
Doubling time: 12 hours (PubMed=14207308).
Miscellaneous: Not distributed parent cell line.
PubMed=14207308; DOI=10.1038/2031355a0
Stoker M., MacPherson I.A.
Syrian hamster fibroblast cell line BHK21 and its derivatives.
Nature 203:1355-1357(1964)

PubMed=1263417
Sushkov F.V., Portugalov V.V., Rudneva S.V., Bobkova N.N., Iordanishvili E.K., Izupak E.A.
Results of mammalian cell culture exposure on artificial earth satellites.
Kosm. Biol. Aviakosm. Med. 10:58-63(1976)

PubMed=6298990; DOI=10.1016/0378-1135(82)90056-6
McPhee D.A., Parsonson I.M., Della-Porta A.J.
Comparative studies on the growth of Australian bluetongue virus serotypes in continuous cell lines and embryonated chicken eggs.
Vet. Microbiol. 7:401-410(1982)

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)
https://en.wikipedia.org/wiki/Baby_hamster_kidney_cell
BTI-Tn-5B1-4CVCL_C190 CVCL_Z410 (BTI-Tn-5B1-28)CVCL_Z252 (BTI-Tnao38) CVCL_Z094 (H5CL-B) CVCL_Z095 (H5CL-F)CVCL_RW20 (Hi-5 Rix4446) CVCL_UF19 (High5-ht33) CVCL_UF20 (High5-ht35)CVCL_Z431 (Tn-4h) CVCL_RY32 (Tni-FNL) CVCL_RT23 (Tnms42)kapustníkTrichoplusia nizvieraciaetickáBTI-TN-5B1-4; BTI-TN5B1-4; BTI-Tn5B14; BTI-Tn 5B1-4; Tn-5B1-4; Tn 5B1-4; Tn5 B1-4; Tn5B1-4; TN5B14; TnH5; High Five; High 5; High-5; High5; Hi-five; Hi-5; Hi5; Tn-5Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línie/neurčenéembryonálne/Group: Insect cell line.
Group: Recombinant protein production insect cell line.
Characteristics: Infected with the alphanodavirus TnCLV.
Doubling time: 26 hours (PubMed=21667340); 34 +- 1 hours (in static culture), 27 +- 2 hours (in suspension culture) (PubMed=10585188).
Omics: Genome sequenced.
PubMed=1369220; DOI=10.1021/bp00017a003
Wickham T.J., Davis T., Granados R.R., Shuler M.L., Wood H.A.
Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system.
Biotechnol. Prog. 8:391-396(1992)

PubMed=8314732; DOI=10.1007/BF02633986
Davis T.R., Wickham T.J., McKenna K.A., Granados R.R., Shuler M.L., Wood H.A.
Comparative recombinant protein production of eight insect cell lines.
In Vitro Cell. Dev. Biol. Anim. 29:388-390(1993)

DOI=10.1016/S0022-2011(94)90400-6
Granados R.R., Li G.-X., Derksen A.C.G., McKenna K.A.
A new insect cell line from Trichoplusia ni (BTI-Tn-5B1-4) susceptible to Trichoplusia ni single enveloped nuclear polyhedrosis virus.
J. Invertebr. Pathol. 64:260-266(1994)

Patent=US5300435
Granados R.R.
Trichoplusia ni cell line which supports replication of other baculoviruses.
Patent number US5300435, 05-Apr-1994

PubMed=10358729
Yanase T., Yasunaga C., Kawarabata T.
Replication of Spodoptera exigua nucleopolyhedrovirus in permissive and non-permissive lepidopteran cell lines.
Acta Virol. 42:293-298(1998)

PubMed=10397817; DOI=10.1002/(SICI)1097-0290(19990605)63:5<612::AID-BIT11>3.0.CO;2-C
Saarinen M.A., Troutner K.A., Gladden S.G., Mitchell-Logean C.M., Murhammer D.W.
Recombinant protein synthesis in Trichoplusia ni BTI-Tn-5B1-4 insect cell aggregates.
Biotechnol. Bioeng. 63:612-617(1999)

PubMed=10585188; DOI=10.1021/bp990119f
Keith M.B., Farrell P.J., Iatrou K., Behie L.A.
Screening of transformed insect cell lines for recombinant protein production.
Biotechnol. Prog. 15:1046-1052(1999)

Patent=US7179648
Granados R.R., Li G.-X.
Clonal cell lines derived from BTI-TN-5B1-4.
Patent number US7179648, 20-Feb-2007

PubMed=17686877; DOI=10.1128/JVI.00807-07
Li T.-C., Scotti P.D., Miyamura T., Takeda N.
Latent infection of a new alphanodavirus in an insect cell line.
J. Virol. 81:10890-10896(2007)

PubMed=19941903; DOI=10.1016/j.jviromet.2009.11.022
Karger A., Bettin B., Lenk M., Mettenleiter T.C.
Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing.
J. Virol. Methods 164:116-121(2010)

PubMed=20300881; DOI=10.1007/s12033-010-9268-3
Krammer F., Schinko T., Palmberger D., Tauer C., Messner P., Grabherr R.
Trichoplusia ni cells (High Five) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines.
Mol. Biotechnol. 45:226-234(2010)

PubMed=21667340; DOI=10.1007/s12250-011-3177-x
Wu Y.-L., Jiang L., Hashimoto Y., Granados R.R., Li G.-X.
Establishment, growth kinetics, and susceptibility to AcMNPV of heat tolerant lepidopteran cell lines.
Virol. Sin. 26:198-205(2011)

PubMed=24375231; DOI=10.1007/s10529-013-1429-6
Wilde M., Klausberger M., Palmberger D., Ernst W., Grabherr R.
Tnao38, high five and Sf9 -- evaluation of host-virus interactions in three different insect cell lines: baculovirus production and recombinant protein expression.
Biotechnol. Lett. 36:743-749(2014)

PubMed=29133148; DOI=10.1016/j.pep.2017.11.002
Geisler C., Jarvis D.L.
Adventitious viruses in insect cell lines used for recombinant protein expression.
Protein Expr. Purif. 144:25-32(2017)

PubMed=29376823; DOI=10.7554/eLife.31628
Fu Y., Yang Y., Zhang H., Farley G., Wang J., Quarles K.A., Weng Z., Zamore P.D.
The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology.
eLife 7:E31628-E31628(2018)

PubMed=30449074; DOI=10.1111/1755-0998.12966
Chen W.-B., Yang X.-W., Tetreau G., Song X.-Z., Coutu C., Hegedus D., Blissard G.W., Fei Z.-J., Wang P.
A high-quality chromosome-level genome assembly of a generalist herbivore, Trichoplusia ni.
Mol. Ecol. Resour. 19:485-496(2019)
https://en.wikipedia.org/wiki/High_Five_cells
CCRC-1CVCL_LK64//človekHomo sapiensľudskáetickáCell Collection and Research Center-1Bunková línia využívaná pri produkcii vakcín//Konečné bunkové líniekmeňové bunkyneurčenédospelé/Characteristics: Susceptible to infection by a wide spectrum of viruses.
Doubling time: 30.8 +- 6.2 hours (at 10th passage), 36.5 +- 4.0 hours (at 15th passage), 42.8 +- 2.3 hours (at 20th passage), 41.8 +- 4.3 hours (at 25th passage), 42.4 +- 3.4 hours (at 30th passage) (DOI=10.1038/s41598-017-11997-1). Kmeňové bunky z mezenchýmu (rôsolovitého embryonálneho väziva) z ľudského pupočníka (chorda umbilicalis)
PubMed=28970485; DOI=10.1038/s41598-017-11997-1
Chen P., Zhang K.-H., Na T., Wang L., Yin W.-D., Yuan B.-Z., Wang J.-Z.
The hUC-MSCs cell line CCRC-1 represents a novel, safe and high-yielding HDCs for the production of human viral vaccines.
Sci. Rep. 7:12484-12484(2017)
/
COS-1-pA104RCVCL_ZW94CVCL_0223 (COS-1)/mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetická/Bunková línia využívaná pri produkcii vakcín NCBI_TaxID; 1891767; Simian virus 40 (SV40) [pSV6-1]UniProtKB; P00552; Transposon Tn5 neo; UniProtKB; P68742; African swine fever virus (AFSV) isolate Ba71V pA104R.Transformované bunkové línieobličkovémužskédospelé/Group: Non-human primate cell line.PubMed=31323824; DOI=10.3390/vaccines7030068
Freitas F.B., Simoes M., Frouco G., Martins C., Ferreira F.
Towards the generation of an ASFV-pA104R DISC mutant and a complementary cell line -- a potential methodology for the production of a vaccine candidate.
Vaccines (Basel). 7:68.1-68.16(2019)
/
CRFKCVCL_2426 CVCL_DB45 (FCK)CVCL_W183 (CCC3a subline 8C) CVCL_X693 (CRFK/FIV-AZR-1) CVCL_WL54 (Teth-CRFK)mačka domácaFelis silvestris catuszvieraciaetickáCrFK; Crfk; Crandell Reese Feline Kidney; Crandell Feline Kidney; CCC; Crandell's Cat CellBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé3 mesiacePart of: Naval Biosciences Laboratory (NBL) collection (transferred to ATCC in 1982).
Biotechnology: Widely used to manufacture vaccines for parvoviruses such as feline panleukopenia virus (FPLV) and canine parvoviruses (CPVs).
Characteristics: Persistently infected by feline endogenous virus RD-114.
PubMed=4130570; DOI=10.1007/BF02618435
Crandell R.A., Fabricant C.G., Nelson-Rees W.A.
Development, characterization, and viral susceptibility of a feline (Felis catus) renal cell line (CRFK).
In Vitro 9:176-185(1973)

PubMed=1313703; DOI=10.1292/jvms.54.173
Miyazawa T., Toyosaki T., Tomonaga K., Norimine J., Ohno K., Hasegawa A., Kai C., Mikami T.
Further characterization of a feline T-lymphoblastoid cell line (MYA-1 cells) highly sensitive for feline immunodeficiency virus.
J. Vet. Med. Sci. 54:173-175(1992)

PubMed=9696876; DOI=10.1128/JVI.72.9.7685-7687.1998
Baumann J.G., Gunzburg W.H., Salmons B.
CrFK feline kidney cells produce an RD114-like endogenous virus that can package murine leukemia virus-based vectors.
J. Virol. 72:7685-7687(1998)

PubMed=20631117; DOI=10.1128/JCM.00992-10
Yoshikawa R., Sato E., Igarashi T., Miyazawa T.
Characterization of RD-114 virus isolated from a commercial canine vaccine manufactured using CRFK cells.
J. Clin. Microbiol. 48:3366-3369(2010)

PubMed=21029758; DOI=10.1016/j.virusres.2010.10.020
Okada M., Yoshikawa R., Shojima T., Baba K., Miyazawa T.
Susceptibility and production of a feline endogenous retrovirus (RD-114 virus) in various feline cell lines.
Virus Res. 155:268-273(2011)

PubMed=23585909; DOI=10.1371/journal.pone.0061530
Fukuma A., Yoshikawa R., Miyazawa T., Yasuda J.
A new approach to establish a cell line with reduced risk of endogenous retroviruses.
PLoS ONE 8:E61530-E61530(2013)
http://www.rccc.cytspb.rssi.ru/ecellbank/animal/acrfk.htm
DBS-FCL-1CVCL_4158//mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetickáDBS-FCL1; Division of Biologics Standards-Fetal Cercopithecus Lung-1Bunková línia využívaná pri produkcii vakcín//Konečné bunkové líniepľúcnemužskéembryonálne135 fetálnych dníGroup: Non-human primate cell line. PubMed=4633070; DOI=10.1007/BF02619057
Wallace R.E., Vasington P.J., Petricciani J.C., Hopps H.E., Lorenz D.E., Kadanka Z.
Development and characterization of cell lines from subhuman primates.
In Vitro 8:333-341(1973)

PubMed=4203458
Petricciani J.C., Wallace R.E., McCoy D.W.
A comparison of three in vivo assays for cell tumorigenicity.
Cancer Res. 34:105-108(1974)

Patent=US4040905
Hopps H.E., Lorenz D.E., Petricciani J.C., Vasington P.J., Wallace R.E.
Sub-human primate diploid cell lines as substrates for virus vaccine production.
Patent number US4040905, 09-Aug-1977

PubMed=7065527; DOI=10.1164/arrd.1982.125.2.222
Hay R.J., Williams C.D., Macy M.L., Lavappa K.S.
Cultured cell lines for research on pulmonary physiology available through the American Type Culture Collection.
Am. Rev. Respir. Dis. 125:222-232(1982)
/
DBS-FCL-2CVCL_4159//mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetickáDBS-FCL2; FCL-2; Division of Biologics Standards-Fetal Cercopithecus Lung-2Bunková línia využívaná pri produkcii vakcín//Konečné bunkové líniepľúcnemužskéembryonálne141 fetálnych dníGroup: Non-human primate cell line.
Characteristics: Senesces at ~12 PDL.
PubMed=4633070; DOI=10.1007/BF02619057
Wallace R.E., Vasington P.J., Petricciani J.C., Hopps H.E., Lorenz D.E., Kadanka Z.
Development and characterization of cell lines from subhuman primates.
In Vitro 8:333-341(1973)

Patent=US4040905
Hopps H.E., Lorenz D.E., Petricciani J.C., Vasington P.J., Wallace R.E.
Sub-human primate diploid cell lines as substrates for virus vaccine production.
Patent number US4040905, 09-Aug-1977

PubMed=7065527; DOI=10.1164/arrd.1982.125.2.222
Hay R.J., Williams C.D., Macy M.L., Lavappa K.S.
Cultured cell lines for research on pulmonary physiology available through the American Type Culture Collection.
Am. Rev. Respir. Dis. 125:222-232(1982)
/
DBS-FRhL-2CVCL_4160//makak rhesusMacaca mulatta zvieraciaetickáDBS-FRHL-2; DBSFRhL-2; DBSFRHL-2; DBSFRhL2; FRhL-2; FrHL-2; FrhL2; Division of Biologics Standards-Fetal Rhesus Lung-2Bunková línia využívaná pri produkcii vakcín//Konečné bunkové líniepľúcnemužskéembryonálne/Group: Non-human primate cell line.
Biotechnology: Was used from 1997 to 1999 for the production of the rhesus rotavirus vaccine-tetravalent (RRV-TV) by Wyeth Laboratories (Trade Name: RotaShield).
Characteristics: Senesces at ~74 PDL.
Discontinued: IZSLER; BS CL 215; probable.


PubMed=4348695; DOI=10.1007/BF02619056
Wallace R.E., Vasington P.J., Petricciani J.C., Hopps H.E., Lorenz D.E., Kadanka Z.
Development of a diploid cell line from fetal rhesus monkey lung for virus vaccine production.
In Vitro 8:323-332(1973)

PubMed=4203458
Petricciani J.C., Wallace R.E., McCoy D.W.
A comparison of three in vivo assays for cell tumorigenicity.
Cancer Res. 34:105-108(1974)

Patent=US4040905
Hopps H.E., Lorenz D.E., Petricciani J.C., Vasington P.J., Wallace R.E.
Sub-human primate diploid cell lines as substrates for virus vaccine production.
Patent number US4040905, 09-Aug-1977

PubMed=7065527; DOI=10.1164/arrd.1982.125.2.222
Hay R.J., Williams C.D., Macy M.L., Lavappa K.S.
Cultured cell lines for research on pulmonary physiology available through the American Type Culture Collection.
Am. Rev. Respir. Dis. 125:222-232(1982)
/
DEC+99CVCL_JF07//kačica diváAnas platyrhynchos / boschaszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línie/neurčenéembryonálne14 fetálnych dníGroup: Bird cell line.
Doubling time: ~36 hours (CelloPub=CLPUB00393).
CLPUB00393: Ivanov I.G., Kril A.I.: Establishment and characterization of a permanent duck embryo cell line. Exp. Pathol. Parasitol. 4:41-44(2000); CLPUB00394: Todorova K., Ivanov I., Georgieva A., Lazarova S., Milcheva R., Dimitrov P., Dimitrov R., Russev R.: Fumonisin B1 cytotoxicity and subcellular localization in duck embryo cell line DEC 99.
C. R. Acad. Bulg. Sci. 68:617-622(2015)
/
DuckCelt-T17CVCL_JF18ÁnoCVCL_JF17 (T17-17703A) CVCL_JF15 (T17-17703B) CVCL_JF16 (T17-17703B2)kačica pižmováCairina moschata zvieraciaetickáDuckCeltTM-T17; T17Bunková línia využívaná pri produkcii vakcínNCBI_TaxID; 28285; Adenovirus 5 [E1A]UniProtKB; B7S5K9; Cairina moschata TERTTelomerázou imortalizované bunkové línie/neurčené//Group: Bird cell line.
Group: Serum/protein free medium cell line.
From: Transgene SA; France.
CLPUB00392
Petiot E., Proust A., Traversier A., Rosa-Calatrava M., Balloul J.-M.
Novel avian DuckCeltTM-T17 cell line for production of viral vaccines: application to influenza viruses production.
(In) Vaccine Technology VI; Palomares L., Cox M., Mukhopadhyay T., Garcon N. (eds.); pp.56-56; ECI Symposium Series; New York (2016)

PubMed=28571695; DOI=10.1016/j.vaccine.2017.03.102
Petiot E., Proust A., Traversier A., Durous L., Dappozze F., Gras M., Guillard C., Balloul J.-M., Rosa-Calatrava M.
Influenza viruses production: evaluation of a novel avian cell line DuckCelt(R)-T17.
Vaccine 36:3101-3111(2018)
/
EB66CVCL_G703//kačica diváAnas platyrhynchos / boschaszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Embryonálne kmeňové bunky/mužskéembryonálneblastocystaGroup: Bird cell line.
Group: Serum/protein free medium cell line.
From: Valneva SE; France.
PubMed=20562528
Olivier S., Jacoby M., Brillon C., Bouletreau S., Mollet T., Nerriere O., Angel A., Danet S., Souttou B., Guehenneux F., Gauthier L., Berthome M., Vie H., Beltraminelli N., Mehtali M.
EB66 cell line, a duck embryonic stem cell-derived substrate for the industrial production of therapeutic monoclonal antibodies with enhanced ADCC activity.
MAbs 2:405-415(2010)

PubMed=21502045
Brown S.W., Mehtali M.
The avian EB66(R) cell line, application to vaccines, and therapeutic protein production.
PDA J. Pharm. Sci. Technol. 64:419-425(2010)

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)

PubMed=26409141; DOI=10.1016/j.vaccine.2015.09.022
Naruse T., Fukuda T., Tanabe T., Ichikawa M., Oda Y., Tochihara S., Kimachi K., Kino Y., Ueda K.
A clinical phase I study of an EB66 cell-derived H5N1 pandemic vaccine adjuvanted with AS03.
Vaccine 33:6078-6084(2015)

Patent=US9260694
Guehenneux F., Moreau K., Esnault M., Mehtali M.
Generation of duck cell lines.
Patent number US9260694, 16-Feb-2016
http://www.valneva.com/en/technologies/82
ESK-4CVCL_3685//diviak lesnýSus scrofa zvieraciaetickáESK4; Embryonic Swine Kidney-4Bunková línia využívaná pri produkcii vakcín//Konečné bunkové línieobličkovéženskéembryonálne// Patent=US4070453
Bordt D.E., Thomas P.C.
Diploid porcine embryonic cell strains, cultures produced therefrom, and use of said cultures for production of vaccines.
Patent number US4070453, 24-Jan-1978

PubMed=19508353; DOI=10.1111/j.1744-313X.2009.00853.x
Ho C.S., Franzo-Romain M.H., Lee Y.J., Lee J.H., Smith D.M.
Sequence-based characterization of swine leucocyte antigen alleles in commercially available porcine cell lines.
Int. J. Immunogenet. 36:231-234(2009)
/
FELCVCL_4199//králikOryctolagus cuniculuszvieraciaetickáFibroblastes Embryonnaires de LapinBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línie/neurčenéembryonálne/Characteristics: Susceptible to infection by rabies virus.PubMed=4043531
Sureau P., Perrin P., Horaud F.
A rabies vaccine produced in a non-tumorigenic rabbit cell line.
Dev. Biol. Stand. 60:133-139(1985)
/
GEKCVCL_GU03//koza domácaCapra hircus zvieraciaetickáGoat Embryonic KidneyBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéneurčenéembryonálne/Doubling time: ~49.5 hours (CelloPub=CLPUB00354).CLPUB00354
Xiang M., Lu S., Gao Q.-H., Huang H.-J., Chen Z.-H., Tao B.-F., Zhan C.-Y., Qian Y.-G., Sun R.-L., Xia L., Tong W.-W., Wang L.-F., Hua J., Tao L.-W.
A new cell line from goat embryonic kidney may be a candidate to produce influenza virus vaccine.
Indian J. Anim. Sci. 85:828-831(2015)
/
hCKCVCL_WL43CVCL_0422 (MDCK)/pes domáciCanis (lupus) familiariszvieraciaetická/Bunková línia využívaná pri produkcii vakcín/HGNC; 10860; ST6GAL1Spontánne imortalizované bunkové línieobličkovéženskédospelé/Characteristics: Will be useful for influenza virus research, particularly studies involving human A/H3N2 influenza viruses and possibly for vaccine production.
Characteristics: Expresses large amounts of alpha-2,6-sialoglycans and small amounts of alpha-2,3-sialoglycans.
Knockout cell: Method=CRISPR/Cas9; VGNC; 46850; ST3GAL1.
Knockout cell: Method=CRISPR/Cas9; VGNC; 46851; ST3GAL2.
Knockout cell: Method=CRISPR/Cas9; UniProtKB; F1PAE4; ST3GAL3.
Knockout cell: Method=CRISPR/Cas9; VGNC; 46852; ST3GAL4.
Knockout cell: Method=CRISPR/Cas9; VGNC; 46853; ST3GAL5.
Knockout cell: Method=CRISPR/Cas9; VGNC; 46854; ST3GAL6.
Knockout cell: Method=CRISPR/Cas9; UniProtKB; F1Q495; ST3GAL2L.
PubMed=31036910; DOI=10.1038/s41564-019-0433-6
Takada K., Kawakami C., Fan S., Chiba S., Zhong G., Gu C., Shimizu K., Takasaki S., Sakai-Tagawa Y., Lopes T.J.S., Dutta J., Khan Z., Kriti D., van Bakel H., Yamada S., Watanabe T., Imai M., Kawaoka Y.
A humanized MDCK cell line for the efficient isolation and propagation of human influenza viruses.
Nat. Microbiol. 4:1268-1273(2019)
/
HEK293CVCL_0045ÁnoCVCL_U658 (211A) CVCL_U659 (211B) CVCL_U660 (211R)
CVCL_6351 (293 EcR Shh) CVCL_2285 (293 GTP-AC-free) CVCL_2286 (293 N3S)
CVCL_4W25 (293 TRE/Cont) CVCL_4W26 (293 TRE/FLAG-POLK) CVCL_9832 (293-CD40)
CVCL_4V25 (293-CD40L) CVCL_8468 (293-Db) CVCL_XI05 (293-ESM)
CVCL_2283 (293-Hektor) CVCL_9831 (293-IL-1RI) CVCL_8469 (293-Kb)
CVCL_A783 (293-LA) CVCL_VN85 (293-M7) CVCL_2284 (293-PERV-PK-CIRCE)
CVCL_M907 (293-VnR) CVCL_RY64 (293_hEcad) CVCL_RY62 (293_hEcad/hSyn2)
CVCL_RY72 (293_hSyn1) CVCL_RY63 (293_hSyn2) CVCL_RY68 (293_hSyn4)
CVCL_DR94 (293/ACE2) CVCL_H362 (293/ADORA1/Galpha15) CVCL_KS32 (293/AP1-luc)
CVCL_JZ01 (293/CFP) CVCL_6352 (293/CHE-Fc) CVCL_H364 (293/CRE-Luc)
CVCL_KS33 (293/CREB-luc) CVCL_J499 (293/CrmA) CVCL_H366 (293/EP1)
CVCL_H368 (293/FP/Galpha15) CVCL_JY88 (293/GFP) CVCL_H369 (293/GHRH/Galpha15)
CVCL_KA76 (293/GNRHR/Galpha15) CVCL_H370 (293/H1) CVCL_Y384 (293/hMD2-CD14)
CVCL_Y385 (293/hTLR1-HA) CVCL_Y417 (293/hTLR1-TLR2) CVCL_Y386 (293/hTLR10-HA)
CVCL_Y387 (293/hTLR2) CVCL_Y388 (293/hTLR2-CD14) CVCL_Y389 (293/hTLR2-HA)
CVCL_Y390 (293/hTLR2-TLR6) CVCL_Y391 (293/hTLR3) CVCL_Y392 (293/hTLR3-HA)
CVCL_Y394 (293/hTLR4-HA) CVCL_Y393 (293/hTLR4A) CVCL_Y395 (293/hTLR4A-MD2-CD14)
CVCL_Y396 (293/hTLR5) CVCL_Y397 (293/hTLR5-CD14) CVCL_Y398 (293/hTLR5-HA)
CVCL_Y399 (293/hTLR6-HA) CVCL_9V14 (293/KDR) CVCL_Y101 (293/LacZ)
CVCL_JY95 (293/Luc) CVCL_H372 (293/MCH1) CVCL_Y400 (293/mTLR1)
CVCL_Y401 (293/mTLR1-TLR2) CVCL_Y402 (293/mTLR2) CVCL_Y403 (293/mTLR2-TLR6)
CVCL_Y404 (293/mTLR3) CVCL_Y405 (293/mTLR4) CVCL_Y406 (293/mTLR4-MD2-CD14)
CVCL_Y407 (293/mTLR5) CVCL_Y408 (293/mTLR6) CVCL_Y409 (293/mTLR9)
CVCL_KS34 (293/NFkB-luc) CVCL_H373 (293/NPY1) CVCL_IM63 (293/pmiR-155)
CVCL_IM64 (293/pmiR-K12-11) CVCL_UR29 (293/SF) CVCL_H375 (293/TP)
CVCL_JY96 (293/YFP) CVCL_KA64 (293AAV) CVCL_KA63 (293AD)
CVCL_E072 (293GP) CVCL_DD14 (293LAP10) CVCL_DD15 (293LAP13)
CVCL_W338 (293RC21) CVCL_V648 (293sars181A) CVCL_Y381 (293XL/null)
CVCL_6353 (2A) CVCL_6355 (2V6.11) CVCL_DD40 (35.32)
CVCL_DD41 (37S2.8) CVCL_6361 (90.74) CVCL_6871 (AAV-293)
CVCL_9804 (AD-293) CVCL_WI47 (AmphoPack-293) CVCL_W339 (AP-1 LUCPorter)
CVCL_DD22 (BHH2C) CVCL_DD23 (BHH3) CVCL_DD24 (BHH8)
CVCL_ZZ37 (C8) CVCL_9V15 (CRE8) CVCL_9867 (D1-HEK-293)
CVCL_7261 (EcR-293) CVCL_VK71 (F2N78) CVCL_XB48 (FC33)
CVCL_6902 (FIP293) CVCL_U421 (Flp-In-293) CVCL_U006 (Flp293A)
CVCL_5285 (GFPu-1) CVCL_LB59 (GloResponse 9XGAL4UAS-luc2P HEK293) CVCL_LB60 (GloResponse CRE-luc2P HEK293)
CVCL_LB61 (GloResponse NF-kappaB-RE-luc2P HEK293) CVCL_LB62 (GloResponse NFAT-RE-luc2P HEK293) CVCL_WI48 (GP2-293)
CVCL_JQ47 (h-TREK-1/HEK) CVCL_KU63 (HEK 293 HTR2B Gq) CVCL_AQ26 (HEK 293 STF)
CVCL_V349 (HEK 293 Tet-Off) CVCL_KU39 (HEK 293 Tet-Off Advanced) CVCL_KS31 (HEK 293 Tet-On)
CVCL_V350 (HEK 293 Tet-On 3G) CVCL_KU43 (HEK 293 Tet-On Advanced) CVCL_V351 (HEK 293 tTS)
CVCL_RQ74 (HEK 293/TLR3/NF-kB Luciferase Reporter) CVCL_RQ75 (HEK 293/TLR5/NF-kB Luciferase Reporter) CVCL_RQ76 (HEK 293/TLR7/NF-kB Luciferase Reporter)
CVCL_RQ77 (HEK 293/TLR8/NF-kB Luciferase Reporter) CVCL_RQ78 (HEK 293/TLR9/NF-kB Luciferase Reporter) CVCL_YN15 (HEK-293 hNav1.9)
CVCL_YN16 (HEK-293 mNav1.9) CVCL_YN17 (HEK-293 rNav1.9) CVCL_VT77 (HEK-293-AChE)
CVCL_GR68 (HEK-293-Munc18b) CVCL_9868 (HEK-293-TrkB) CVCL_4W07 (HEK-293.2sus)
CVCL_W457 (HEK-293B1) CVCL_9869 (HEK-293B2) CVCL_9870 (HEK-293CymR)
CVCL_HB82 (HEK-3KO) CVCL_VV19 (HEK-Blue hDectin-1a) CVCL_VV20 (HEK-Blue hDectin-1b)
CVCL_IM95 (HEK-Blue hMD2-CD14) CVCL_IM80 (HEK-Blue hTLR2) CVCL_IM81 (HEK-Blue hTLR3)
CVCL_IM82 (HEK-Blue hTLR4) CVCL_IM83 (HEK-Blue hTLR5) CVCL_IM84 (HEK-Blue hTLR7)
CVCL_IM85 (HEK-Blue hTLR8) CVCL_IM86 (HEK-Blue hTLR9) CVCL_KT26 (HEK-Blue IFN-alpha/beta)
CVCL_UF30 (HEK-Blue IFN-gamma) CVCL_UF31 (HEK-Blue IL-12) CVCL_UF32 (HEK-Blue IL-17)
CVCL_UF33 (HEK-Blue IL-18) CVCL_UF26 (HEK-Blue IL-2) CVCL_UF59 (HEK-Blue IL-33)
CVCL_UF60 (HEK-Blue IL-6) CVCL_5I78 (HEK-Blue KD-TLR5) CVCL_VV21 (HEK-Blue mDectin-1b)
CVCL_VV23 (HEK-Blue mDectin-2) CVCL_VV22 (HEK-Blue mMincle) CVCL_IM94 (HEK-Blue mTLR13)
CVCL_IM87 (HEK-Blue mTLR2) CVCL_IM88 (HEK-Blue mTLR3) CVCL_IM89 (HEK-Blue mTLR4)
CVCL_IM90 (HEK-Blue mTLR5) CVCL_IM91 (HEK-Blue mTLR7) CVCL_IM92 (HEK-Blue mTLR8)
CVCL_IM93 (HEK-Blue mTLR9) CVCL_UF25 (HEK-Blue TNF-alpha) CVCL_E339 (HEK-CaSR)
CVCL_WN84 (HEK-ptdTomato-N1 8) CVCL_IM79 (HEK-TLR2) CVCL_VI43 (HEK-TLR2-YFP)
CVCL_VI44 (HEK-TLR4-YFP) CVCL_VI46 (HEK-TLR9-YFP) CVCL_2H48 (HEK1.1)
CVCL_5I96 (HEK293 (+Galpha16) AequoScreen) CVCL_0296 (HEK293 482R) CVCL_ZV87 (HEK293 Actin-cpstFRET-Actin)
CVCL_ZV88 (HEK293 Actinin-C-cpstFRET) CVCL_ZV89 (HEK293 Actinin-M-cpstFRET) CVCL_YJ96 (HEK293 ADCYAP1R1 HiTSeeker)
CVCL_YJ97 (HEK293 ADORA2A HiTSeeker) CVCL_YJ98 (HEK293 ADORA2B HiTSeeker) CVCL_YJ99 (HEK293 ADRB2 HiTSeeker)
CVCL_YK00 (HEK293 ADRB3 HiTSeeker) CVCL_5I97 (HEK293 AequoScreen) CVCL_YK01 (HEK293 AVPR1A HiTSeeker)
CVCL_YK02 (HEK293 BDKRB1 HiTSeeker) CVCL_YK03 (HEK293 BDKRB2 HiTSeeker) CVCL_YK04 (HEK293 CALCR HiTSeeker)
CVCL_UR28 (HEK293 Cas9) CVCL_HC62 (HEK293 Cav3.1) CVCL_HC63 (HEK293 Cav3.2)
CVCL_HC64 (HEK293 Cav3.3) CVCL_YK05 (HEK293 CCKBR arrestin-Nomad) CVCL_YK06 (HEK293 CCKBR calcium-Nomad)
CVCL_UF04 (HEK293 CD63 CRISPR) CVCL_YK07 (HEK293 CHRM1 HiTSeeker) CVCL_YI91 (HEK293 CNR1 cAMP-Nomad)
CVCL_YK08 (HEK293 CNR1 HiTSeeker) CVCL_YK09 (HEK293 CNR2 HiTSeeker) CVCL_ZV86 (HEK293 cpstFRET-Actin)
CVCL_YK10 (HEK293 CRHR2 HiTSeeker) CVCL_UH22 (HEK293 CYP19A1*1) CVCL_UH23 (HEK293 CYP19A1*3)
CVCL_UH24 (HEK293 CYP19A1*4) CVCL_UG79 (HEK293 CYP1A1*1) CVCL_UG80 (HEK293 CYP1A1*1-V5)
CVCL_UG81 (HEK293 CYP1A2*1A) CVCL_UG82 (HEK293 CYP1A2*1A-V5) CVCL_UG83 (HEK293 CYP1A2*21)
CVCL_UG86 (HEK293 CYP2A13*1A) CVCL_UG87 (HEK293 CYP2A13*1A-V5) CVCL_UG84 (HEK293 CYP2A6*1A)
CVCL_UG85 (HEK293 CYP2A6*1A-V5) CVCL_UG89 (HEK293 CYP2B6*1-V5) CVCL_UH00 (HEK293 CYP2C18*1-V5)
CVCL_UH02 (HEK293 CYP2C19*1A-V5) CVCL_UH03 (HEK293 CYP2C19*1B-V5) CVCL_UH05 (HEK293 CYP2C19-E92D-V5)
CVCL_UG90 (HEK293 CYP2C8*1-V5) CVCL_UG91 (HEK293 CYP2C8*2-V5) CVCL_UG92 (HEK293 CYP2C8*3-V5)
CVCL_UG93 (HEK293 CYP2C8*4-V5) CVCL_UG94 (HEK293 CYP2C9*1) CVCL_UG95 (HEK293 CYP2C9*1-V5)
CVCL_UG96 (HEK293 CYP2C9*2-V5) CVCL_UG97 (HEK293 CYP2C9*3-V5) CVCL_UG98 (HEK293 CYP2C9*8-V5)
CVCL_UG99 (HEK293 CYP2C9*9-V5) CVCL_UH09 (HEK293 CYP2D6*10) CVCL_UH10 (HEK293 CYP2D6*17-V5)
CVCL_UH07 (HEK293 CYP2D6*1A-V5) CVCL_UH08 (HEK293 CYP2D6*2-V5) CVCL_UH11 (HEK293 CYP2E1*1A)
CVCL_UH12 (HEK293 CYP2E1*1A-V5) CVCL_UH13 (HEK293 CYP2J2*1-V5) CVCL_UH16 (HEK293 CYP3A4*15-V5)
CVCL_UH15 (HEK293 CYP3A4*1A-V5) CVCL_UH17 (HEK293 CYP3A5*1) CVCL_UH18 (HEK293 CYP3A5*1-V5)
CVCL_UH20 (HEK293 CYP3A7*2-V5) CVCL_UH21 (HEK293 CYP4A11*1-V5) CVCL_YK11 (HEK293 DRD1 cAMP-Nomad)
CVCL_YK12 (HEK293 DRD1 HiTSeeker) CVCL_YK13 (HEK293 DRD5 HiTSeeker) CVCL_YK14 (HEK293 FSHR Fluo-HiTSeeker)
CVCL_YK15 (HEK293 FSHR HiTSeeker) CVCL_XZ52 (HEK293 human APP695) CVCL_XZ53 (HEK293 human APP695 Swedish)
CVCL_YK16 (HEK293 LHCGR Fluo-HiTSeeker) CVCL_YK17 (HEK293 LHCGR HiTSeeker) CVCL_YK18 (HEK293 MC4R HiTSeeker)
CVCL_ZW92 (HEK293 Nav1.7) CVCL_KS50 (HEK293 p65-HaloTag) CVCL_YK19 (HEK293 PTGER2 HiTSeeker)
CVCL_YK20 (HEK293 PTGER4 HiTSeeker) CVCL_RY69 (HEK293 rLN10) CVCL_YD69 (HEK293 RPS2 A226Y)
CVCL_YD70 (HEK293 RPS2 WT) CVCL_RY71 (HEK293 rLN8) CVCL_WS18 (HEK293 SCN1A/SCN1B/SCN2B)
CVCL_S025 (HEK293 SimpleCell O-GalNAc) CVCL_YK21 (HEK293 TACR1 HiTSeeker) CVCL_YK22 (HEK293 tGFP-BACE1)
CVCL_YK23 (HEK293 TSHR HiTSeeker) CVCL_YK24 (HEK293 VIPR1 HiTSeeker) CVCL_JZ97 (HEK293_GS-KO)
CVCL_6910 (HEK293-A) CVCL_E149 (HEK293-A7) CVCL_ZD63 (HEK293-CAGA)
CVCL_YJ21 (HEK293-CB1) CVCL_6974 (HEK293-EBNA) CVCL_EP72 (HEK293-EPHB1)
CVCL_EP73 (HEK293-EPHB2) CVCL_6996 (HEK293-ET) CVCL_6642 (HEK293-F)
CVCL_6643 (HEK293-H) CVCL_ZC53 (HEK293-hCNR1) CVCL_ZC54 (HEK293-hCNR2)
CVCL_ZC15 (HEK293-hGPR55) CVCL_VP06 (HEK293-HM3) CVCL_WI13 (HEK293-hNOTCH1)
CVCL_WI14 (HEK293-hNOTCH2) CVCL_VP07 (HEK293-HR1) CVCL_ZC55 (HEK293-mCnr1)
CVCL_ZC56 (HEK293-mCnr2) CVCL_ZC16 (HEK293-mGpr55) CVCL_5I43 (HEK293-Nav 1.3)
CVCL_WG86 (HEK293-Nrf2 clone 1) CVCL_WG87 (HEK293-Nrf2 clone 2) CVCL_ZC57 (HEK293-rCnr1)
CVCL_ZC58 (HEK293-rCnr2) CVCL_VR42 (HEK293-SREBP1-T2A-luciferase-KI) CVCL_RZ86 (HEK293-YFV-prM/E-opt)
CVCL_H513 (HEK293/5-HT2C) CVCL_H514 (HEK293/AT1) CVCL_KA11 (HEK293/Galpha15)
CVCL_H515 (HEK293/GCGR/Galpha15) CVCL_5A22 (HEK293/GFP-DFCP1) CVCL_H516 (HEK293/hERG)
CVCL_H517 (HEK293/hKv1.5) CVCL_H518 (HEK293/hKv4.2) CVCL_H519 (HEK293/hNav1.5)
CVCL_H520 (HEK293/hNav1.7) CVCL_KA65 (HEK293/NFAT/beta-lactamase) CVCL_KA07 (HEK293/PD-L1)
CVCL_KA75 (HEK293/PTHR1/CRE/beta-lactamase) CVCL_M775 (HEK293L) CVCL_A784 (HEK293S)
CVCL_0063 (HEK293T) CVCL_UL49 (HEK293TN) CVCL_HB83 (HEKR1)
CVCL_HB84 (HEKR2) CVCL_HB85 (HEKR2R1) CVCL_HB86 (HEKR2R3)
CVCL_HB87 (HEKR3) CVCL_HB88 (HEKR3R1) CVCL_2491 (HH-8)
CVCL_E065 (HKb20) CVCL_N700 (HL-2) CVCL_WK50 (iLite VEGF Assay Ready Cells)
CVCL_KW01 (InCELL Hunter HEK 293 BAZ2A Bromodomain) CVCL_KW02 (InCELL Hunter HEK 293 BRD2(1) Bromodomain) CVCL_KW03 (InCELL Hunter HEK 293 BRD2(1,2) Bromodomain)
CVCL_KW04 (InCELL Hunter HEK 293 BRD3(1) Bromodomain) CVCL_KW05 (InCELL Hunter HEK 293 BRD3(1,2) Bromodomain) CVCL_KW06 (InCELL Hunter HEK 293 BRD4(1) Bromodomain)
CVCL_KW07 (InCELL Hunter HEK 293 BRDT(1) Bromodomain) CVCL_KW08 (InCELL Hunter HEK 293 BRDT(1,2) Bromodomain) CVCL_KW09 (InCELL Hunter HEK 293 SMARCA4 Bromodomain)
CVCL_KW10 (InCELL Hunter HEK 293 TAF1L(2) Bromodomain) CVCL_5I63 (K177) CVCL_YJ80 (LINTERNA HEK293)
CVCL_0406 (MAIL8) CVCL_A9P3 (NF-KappaB reporter (Luc)-HEK293) CVCL_ZL50 (NOX1-HEK293)
CVCL_ZL51 (NOX4-HEK293) CVCL_KZ31 (PathHunter HEK 293 ADRA1D(82-572) beta-arrestin) CVCL_KZ32 (PathHunter HEK 293 ADRB2 Total GPCR Internalization)
CVCL_KZ33 (PathHunter HEK 293 AVPR2 beta-arrestin) CVCL_KZ34 (PathHunter HEK 293 BDKRB2 beta-arrestin) CVCL_KZ35 (PathHunter HEK 293 beta-arrestin1-EA Parental)
CVCL_KZ36 (PathHunter HEK 293 beta-arrestin2-EA Parental) CVCL_KZ37 (PathHunter HEK 293 CCKAR beta-arrestin) CVCL_KZ38 (PathHunter HEK 293 CCR2 beta-arrestin)
CVCL_KZ39 (PathHunter HEK 293 CCR7 beta-arrestin) CVCL_KZ40 (PathHunter HEK 293 CNR2 beta-arrestin) CVCL_KZ41 (PathHunter HEK 293 CXCR2 beta-arrestin)
CVCL_KZ42 (PathHunter HEK 293 CXCR6 beta-arrestin) CVCL_KZ43 (PathHunter HEK 293 cyno CXCR1 beta-arrestin) CVCL_KZ44 (PathHunter HEK 293 cyno CXCR2 beta-arrestin)
CVCL_KZ45 (PathHunter HEK 293 EDG1 Total GPCR Internalization) CVCL_KZ46 (PathHunter HEK 293 EDG3 beta-arrestin) CVCL_KZ47 (PathHunter HEK 293 F2RL1 beta-arrestin)
CVCL_KZ48 (PathHunter HEK 293 FFAR1 beta-arrestin-1) CVCL_KZ49 (PathHunter HEK 293 GCGR Total GPCR Internalization) CVCL_KZ50 (PathHunter HEK 293 GPR119 beta-arrestin)
CVCL_KZ51 (PathHunter HEK 293 GPR120L Total GPCR Internalization) CVCL_KZ52 (PathHunter HEK 293 GPR150 beta-arrestin) CVCL_KZ53 (PathHunter HEK 293 GPR152 beta-arrestin)
CVCL_KZ54 (PathHunter HEK 293 GPR173 beta-arrestin) CVCL_KZ55 (PathHunter HEK 293 GPR20 beta-arrestin) CVCL_KZ56 (PathHunter HEK 293 GPR45 beta-arrestin)
CVCL_KZ57 (PathHunter HEK 293 GRPR beta-arrestin) CVCL_KZ58 (PathHunter HEK 293 IkappaB Degradation) CVCL_KZ59 (PathHunter HEK 293 LXRbeta-NCoR1 Protein Interaction)
CVCL_KZ60 (PathHunter HEK 293 mGPR120 beta-arrestin) CVCL_KZ61 (PathHunter HEK 293 P2RY4 beta-arrestin) CVCL_KZ62 (PathHunter HEK 293 PTGER2 beta-arrestin)
CVCL_KZ63 (PathHunter HEK 293 PTGER4 beta-arrestin) CVCL_KZ64 (PathHunter HEK 293 PTGIR beta-arrestin) CVCL_KZ65 (PathHunter HEK 293 RELA-IkappaB Nuclear Translocation)
CVCL_KZ66 (PathHunter HEK 293 SCTR beta-arrestin) CVCL_KZ67 (PathHunter HEK 293 SSTR3 beta-arrestin) CVCL_3772 (pEAK Rapid)
CVCL_JY47 (PLT460F_(DDR2)) CVCL_RQ69 (PrecisION hCav1.2 alpha1C/beta2a/alpha2-delta1-HEK) CVCL_LC62 (PrecisION hERG-HEK)
CVCL_RQ84 (PrecisION hHCN1-HEK) CVCL_RQ85 (PrecisION hHCN2-HEK) CVCL_RQ83 (PrecisION hHCN3-HEK)
CVCL_RQ81 (PrecisION hNav1.1-HEK) CVCL_LC67 (PrecisION hNav1.5-HEK) CVCL_LC68 (PrecisION hNav1.6-HEK)
CVCL_RQ80 (PrecisION hNav1.7-HEK) CVCL_8967 (ProPak-A.52) CVCL_8968 (ProPak-A.6)
CVCL_8969 (ProPak-X.36) CVCL_VQ64 (SCL215) CVCL_VQ89 (SCL60)
CVCL_6448 (SODk1) CVCL_D585 (T-REx-293) CVCL_8117 (Tet-iNOS-293)
CVCL_2737 (tsA201) CVCL_5I80 (ValiScreen human TRPC3) CVCL_5I81 (ValiScreen human TRPC6)
CVCL_YJ67 (VAMPIRO HEK293) CVCL_2767 (WSS-1)
človekHomo sapiensľudskáneetickáHek293; HEK-293; HEK/293; HEK 293; HEK;293; 293; 293 HEK; 293 Ad5; Human Embryonic Kidney 293Bunková línia využívaná pri produkcii vakcínNCBI_TaxID; 28285; Adenovirus 5/Transformované bunkové línieobličkovéženskéembryonálne/Part of: ENCODE project common cell types; tier 3.
Part of: MD Anderson Cell Lines Project.
Doubling time: ~30 hours (CLS); ~24-30 hours (DSMZ).
Transformant: NCBI_TaxID; 28285; Adenovirus 5.
Omics: Cell surface proteome.
Omics: Deep antibody staining analysis.
Omics: Deep proteome analysis.
Omics: Deep RNAseq analysis.
Omics: Genome sequenced.
Omics: DNA methylation analysis.
Omics: H3K4me3 ChIP-seq epigenome analysis.
Omics: Metabolome analysis.
Omics: Methylated arginine analysis by proteomics.
Omics: Myristoylated proteins analysis by proteomics.
Omics: Protein expression by reverse-phase protein arrays.
Omics: Transcriptome analysis.
Omics: Virome analysis using proteomics.
Misspelling: HECK293; Occasionally.
Misspelling: HEK239; Occasionally.
PubMed=886304; DOI=10.1099/0022-1317-36-1-59
Graham F.L., Smiley J., Russell W.C., Nairn R.
Characteristics of a human cell line transformed by DNA from human adenovirus type 5.
J. Gen. Virol. 36:59-74(1977)

PubMed=9217065; DOI=10.1006/viro.1997.8597
Louis N., Evelegh C., Graham F.L.
Cloning and sequencing of the cellular-viral junctions from the human adenovirus type 5 transformed 293 cell line.
Virology 233:423-429(1997)

PubMed=15218237; DOI=10.1159/000078556
Bylund L., Kytola S., Lui W.-O., Larsson C., Weber G.
Analysis of the cytogenetic stability of the human embryonal kidney cell line 293 by cytogenetic and STR profiling approaches.
Cytogenet. Genome Res. 106:28-32(2004)

PubMed=21502043
Rubino M.J.
Experiences with HEK293: a human cell line.
PDA J. Pharm. Sci. Technol. 64:392-395(2010)

PubMed=21214938; DOI=10.1186/1471-2164-12-14
Atwood B.K., Lopez J., Wager-Miller J., Mackie K., Straiker A.
Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis.
BMC Genomics 12:14-14(2011)

PubMed=21269460; DOI=10.1186/1752-0509-5-17
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Burckstummer T., Bennett K.L., Superti-Furga G., Colinge J.
Initial characterization of the human central proteome.
BMC Syst. Biol. 5:17-17(2011)

PubMed=22278370; DOI=10.1074/mcp.M111.014050
Geiger T., Wehner A., Schaab C., Cox J., Mann M.
Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.
Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012)

PubMed=23325432; DOI=10.1101/gr.147942.112
Varley K.E., Gertz J., Bowling K.M., Parker S.L., Reddy T.E., Pauli-Behn F., Cross M.K., Williams B.A., Stamatoyannopoulos J.A., Crawford G.E., Absher D.M., Wold B.J., Myers R.M.
Dynamic DNA methylation across diverse human cell lines and tissues.
Genome Res. 23:555-567(2013)

PubMed=24618588; DOI=10.1371/journal.pone.0091433
Chernobrovkin A.L., Zubarev R.A.
Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.
PLoS ONE 9:E91433-E91433(2014)

PubMed=25182477; DOI=10.1038/ncomms5767
Lin Y.-C., Boone M., Meuris L., Lemmens I., Van Roy N., Soete A., Reumers J., Moisse M., Plaisance S., Drmanac R., Chen J., Speleman F., Lambrechts D., Van de Peer Y., Tavernier J., Callewaert N.
Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations.
Nat. Commun. 5:4767-4767(2014)

PubMed=25960936; DOI=10.4161/21624011.2014.954893
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
OncoImmunology 3:E954893-E954893(2014)

PubMed=25807930; DOI=10.1002/anie.201500342
Broncel M., Serwa R.A., Ciepla P., Krause E., Dallman M.J., Magee A.I., Tate E.W.
Multifunctional reagents for quantitative proteome-wide analysis of protein modification in human cells and dynamic profiling of protein lipidation during vertebrate development.
Angew. Chem. Int. Ed. 54:5948-5951(2015)

PubMed=25894527; DOI=10.1371/journal.pone.0121314
Bausch-Fluck D., Hofmann A., Bock T., Frei A.P., Cerciello F., Jacobs A., Moest H., Omasits U., Gundry R.L., Yoon C., Schiess R., Schmidt A., Mirkowska P., Hartlova A., Van Eyk J.E., Bourquin J.-P., Aebersold R., Boheler K.R., Zandstra P., Wollscheid B.
A mass spectrometric-derived cell surface protein atlas.
PLoS ONE 10:E0121314-E0121314(2015)

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)

PubMed=27233776; DOI=10.1002/pmic.201500349
Lobas A.A., Karpov D.S., Kopylov A.T., Solovyeva E.M., Ivanov M.V., Ilina I.Y., Lazarev V.N., Kuznetsova K.G., Ilgisonis E.V., Zgoda V.G., Gorshkov M.V., Moshkovskii S.A.
Exome-based proteogenomics of HEK-293 human cell line: coding genomic variants identified at the level of shotgun proteome.
Proteomics 16:1980-1991(2016)

PubMed=27577262; DOI=10.1126/scisignal.aaf7329
Larsen S.C., Sylvestersen K.B., Mund A., Lyon D., Mullari M., Madsen M.V., Daniel J.A., Jensen L.J., Nielsen M.L.
Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells.
Sci. Signal. 9:Rs9-Rs9(2016)

PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005
Li J., Zhao W., Akbani R., Liu W., Ju Z., Ling S., Vellano C.P., Roebuck P., Yu Q., Eterovic A.K., Byers L.A., Davies M.A., Deng W., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y., Mills G.B., Liang H.
Characterization of human cancer cell lines by reverse-phase protein arrays.
Cancer Cell 31:225-239(2017)

DOI=10.13005/bpj/1414
Yuan J., Xu W.W.-W., Jiang S.Y.-L., Yu H.X.-Y., Poon H.-F.
The scattered twelve tribes of HEK293.
Biomed. Pharmacol. J. 11:621-623(2018)

PubMed=29660373; DOI=10.1016/j.bbagen.2018.04.012
Touat-Hamici Z., Bulteau A.-L., Bianga J., Jean-Jacques H., Szpunar J., Lobinski R., Chavatte L.
Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.
Biochim. Biophys. Acta 1862:2493-2505(2018)

PubMed=30260228; DOI=10.1021/acs.jproteome.8b00538
Knott M.E., Manzi M., Zabalegui N., Salazar M.O., Puricelli L.I., Monge M.E.
Metabolic footprinting of a clear cell renal cell carcinoma in vitro model for human kidney cancer detection.
J. Proteome Res. 17:3877-3888(2018)
https://en.wikipedia.org/wiki/HEK_293_cells
Hi-5 Rix4446CVCL_RW20CVCL_C190 (BTI-Tn-5B1-4)/kapustníkTrichoplusia nizvieraciaetickáHi-5 Rix 4446; Rix4446Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línie/neurčenéembryonálne/Group: Insect cell line.
Group: Recombinant protein production insect cell line.
Biotechnology: Used for the production of the papilloma vaccine Cervarix. The C-terminally truncated protein L1 of HPV-16 and HPV-18 are separately produced in this cell line using a recombinantBaculovirus expression system.
/
HP PER.C6CVCL_A9E7CVCL_G704 (PER.C6)/človekHomo sapiensľudskáneetickáHigher passage PER.C6Bunková línia využívaná pri produkcii vakcínNCBI_TaxID; 28285; Adenovirus 5 [E1]/Transformované bunkové línieočnéneurčenéembryonálne/Characteristics: Has a greater capacity for adenovirus production than the parent cell line and is better adapted to suspension culture growth (PubMed=18052336).PubMed=18052336; DOI=10.1021/bp070258u
Berdichevsky M., Gentile M.P., Hughes B., Meis P., Peltier J., Blumentals I., Aunins J., Altaras N.E.
Establishment of higher passage PER.C6 cells for adenovirus manufacture.
Biotechnol. Prog. 24:158-165(2008)
IDE1CVCL_Z164//kliešť čiernonohýIxodes scapularis zvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línie/neurčenéembryonálne/Group: Tick cell line. PubMed=8064520; DOI=10.2307/3283188
Munderloh U.G., Liu Y., Wang M.-M., Chen C.-S., Kurtti T.J.
Establishment, maintenance and description of cell lines from the tick Ixodes scapularis.
J. Parasitol. 80:533-543(1994)

Patent=US5869335
Munderloh U.G., Kurtti T.J., Kocan K.M., Blouin E.F., Ewing S.A.
Propagating bovine parasite by incubation of undifferentiated cells under low oxygen increased carbon dioxide, with organic buffers efficient, large scale production; diagnosis/vaccine for rocky mountains spotted fever.
Patent number US5869335, 09-Feb-1999
IDE12CVCL_Z165//kliešť čiernonohýIxodes scapularis zvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línie/zmiešanéembryonálne/Group: Tick cell line.
Omics: Deep proteome analysis.
Omics: Deep RNAseq analysis.
PubMed=8057317; DOI=10.1093/jmedent/31.3.425
Chen C.-S., Munderloh U.G., Kurtti T.J.
Cytogenetic characteristics of cell lines from Ixodes scapularis (Acari: Ixodidae).
J. Med. Entomol. 31:425-434(1994)

PubMed=8064520; DOI=10.2307/3283188
Munderloh U.G., Liu Y., Wang M.-M., Chen C.-S., Kurtti T.J.
Establishment, maintenance and description of cell lines from the tick Ixodes scapularis.
J. Parasitol. 80:533-543(1994)

Patent=US5869335
Munderloh U.G., Kurtti T.J., Kocan K.M., Blouin E.F., Ewing S.A.
Propagating bovine parasite by incubation of undifferentiated cells under low oxygen increased carbon dioxide, with organic buffers efficient, large scale production; diagnosis/vaccine for rocky mountains spotted fever.
Patent number US5869335, 09-Feb-1999

PubMed=17662657; DOI=10.1016/j.pt.2007.07.009
Bell-Sakyi L., Zweygarth E., Blouin E.F., Gould E.A., Jongejan F.
Tick cell lines: tools for tick and tick-borne disease research.
Trends Parasitol. 23:450-457(2007)

PubMed=22743047; DOI=10.1016/j.ttbdis.2012.05.002
Alberdi M.P., Dalby M.J., Rodriguez-Andres J., Fazakerley J.K., Kohl A., Bell-Sakyi L.
Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines.
Ticks Tick Borne Dis. 3:137-146(2012)

PubMed=25894426; DOI=10.1007/s10493-015-9908-1
Oliver J.D., Chavez A.S.O., Felsheim R.F., Kurtti T.J., Munderloh U.G.
An Ixodes scapularis cell line with a predominantly neuron-like phenotype.
Exp. Appl. Acarol. 66:427-442(2015)
https://www.dsmz.de/fileadmin/Bereiche/Microbiology/Dateien/Kultivierungshinweise/TickCellCultureMethods-4.pdf
IDE2CVCL_Z166//kliešť čiernonohýIxodes scapularis zvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línie/neurčenéembryonálne/Group: Tick cell line.
Omics: Deep RNAseq analysis.
PubMed=8064520; DOI=10.2307/3283188
Munderloh U.G., Liu Y., Wang M.-M., Chen C.-S., Kurtti T.J.
Establishment, maintenance and description of cell lines from the tick Ixodes scapularis.
J. Parasitol. 80:533-543(1994)

PubMed=9364140; DOI=10.1099/00222615-46-10-839
Policastro P.F., Munderloh U.G., Fischer E.R., Hackstadt T.
Rickettsia rickettsii growth and temperature-inducible protein expression in embryonic tick cell lines.
J. Med. Microbiol. 46:839-845(1997)

Patent=US5869335
Munderloh U.G., Kurtti T.J., Kocan K.M., Blouin E.F., Ewing S.A.
Propagating bovine parasite by incubation of undifferentiated cells under low oxygen increased carbon dioxide, with organic buffers efficient, large scale production; diagnosis/vaccine for rocky mountains spotted fever.
Patent number US5869335, 09-Feb-1999

PubMed=11257184; DOI=10.1099/0022-1317-82-4-795
Attoui H., Stirling J.M., Munderloh U.G., Billoir F., Brookes S.M., Burroughs J.N., de Micco P., Mertens P.P.C., de Lamballerie X.
Complete sequence characterization of the genome of the St Croix River virus, a new orbivirus isolated from cells of Ixodes scapularis.
J. Gen. Virol. 82:795-804(2001)

PubMed=17662657; DOI=10.1016/j.pt.2007.07.009
Bell-Sakyi L., Zweygarth E., Blouin E.F., Gould E.A., Jongejan F.
Tick cell lines: tools for tick and tick-borne disease research.
Trends Parasitol. 23:450-457(2007)

PubMed=22743047; DOI=10.1016/j.ttbdis.2012.05.002
Alberdi M.P., Dalby M.J., Rodriguez-Andres J., Fazakerley J.K., Kohl A., Bell-Sakyi L.
Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines.
Ticks Tick Borne Dis. 3:137-146(2012)

PubMed=29886187; DOI=10.1016/j.ttbdis.2018.05.015
Bell-Sakyi L., Darby A., Baylis M., Makepeace B.L.
The Tick Cell Biobank: a global resource for in vitro research on ticks, other arthropods and the pathogens they transmit.
Ticks Tick Borne Dis. 9:1364-1371(2018)
https://www.liverpool.ac.uk/infection-and-global-health/research/tick-cell-biobank/tick-cell-lines/
IDE8CVCL_Z167//kliešť čiernonohýIxodes scapularis zvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línie/zmiešanéembryonálne/Group: Tick cell line.
Omics: Deep RNAseq analysis.
PubMed=8057317; DOI=10.1093/jmedent/31.3.425
Chen C.-S., Munderloh U.G., Kurtti T.J.
Cytogenetic characteristics of cell lines from Ixodes scapularis (Acari: Ixodidae).
J. Med. Entomol. 31:425-434(1994)

PubMed=8064520; DOI=10.2307/3283188
Munderloh U.G., Liu Y., Wang M.-M., Chen C.-S., Kurtti T.J.
Establishment, maintenance and description of cell lines from the tick Ixodes scapularis.
J. Parasitol. 80:533-543(1994)

PubMed=8812616; DOI=10.1006/jipa.1996.0050
Kurtti T.J., Munderloh U.G., Andreadis T.G., Magnarelli L.A., Mather T.N.
Tick cell culture isolation of an intracellular prokaryote from the tick Ixodes scapularis.
J. Invertebr. Pathol. 67:318-321(1996)

Patent=US5869335
Munderloh U.G., Kurtti T.J., Kocan K.M., Blouin E.F., Ewing S.A.
Propagating bovine parasite by incubation of undifferentiated cells under low oxygen increased carbon dioxide, with organic buffers efficient, large scale production; diagnosis/vaccine for rocky mountains spotted fever.
Patent number US5869335, 09-Feb-1999

PubMed=15053931; DOI=10.1016/j.jcpa.2003.12.002
Bell-Sakyi L.
Ehrlichia ruminantium grows in cell lines from four ixodid tick genera.
J. Comp. Pathol. 130:285-293(2004)

PubMed=17662657; DOI=10.1016/j.pt.2007.07.009
Bell-Sakyi L., Zweygarth E., Blouin E.F., Gould E.A., Jongejan F.
Tick cell lines: tools for tick and tick-borne disease research.
Trends Parasitol. 23:450-457(2007)

PubMed=20388200; DOI=10.1186/1756-3305-3-37
Lallinger G., Zweygarth E., Bell-Sakyi L., Passos L.M.F.
Cold storage and cryopreservation of tick cell lines.
Parasit. Vectors 3:37-37(2010)

PubMed=22743047; DOI=10.1016/j.ttbdis.2012.05.002
Alberdi M.P., Dalby M.J., Rodriguez-Andres J., Fazakerley J.K., Kohl A., Bell-Sakyi L.
Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines.
Ticks Tick Borne Dis. 3:137-146(2012)

PubMed=29886187; DOI=10.1016/j.ttbdis.2018.05.015
Bell-Sakyi L., Darby A., Baylis M., Makepeace B.L.
The Tick Cell Biobank: a global resource for in vitro research on ticks, other arthropods and the pathogens they transmit.
Ticks Tick Borne Dis. 9:1364-1371(2018)

PubMed=32158404; DOI=10.3389/fphys.2020.00152
Al-Rofaai A., Bell-Sakyi L.
Tick cell lines in research on tick control.
Front. Physiol. 11:152-152(2020)
https://www.dsmz.de/fileadmin/Bereiche/Microbiology/Dateien/Kultivierungshinweise/TickCellCultureMethods-4.pdf
ISE18CVCL_Z168//kliešť čiernonohýIxodes scapularis zvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línie/zmiešanéembryonálne/Group: Tick cell line.
Omics: Deep RNAseq analysis.
PubMed=8057317; DOI=10.1093/jmedent/31.3.425
Chen C.-S., Munderloh U.G., Kurtti T.J.
Cytogenetic characteristics of cell lines from Ixodes scapularis (Acari: Ixodidae).
J. Med. Entomol. 31:425-434(1994)

PubMed=8064520; DOI=10.2307/3283188
Munderloh U.G., Liu Y., Wang M.-M., Chen C.-S., Kurtti T.J.
Establishment, maintenance and description of cell lines from the tick Ixodes scapularis.
J. Parasitol. 80:533-543(1994)

Patent=US5869335
Munderloh U.G., Kurtti T.J., Kocan K.M., Blouin E.F., Ewing S.A.
Propagating bovine parasite by incubation of undifferentiated cells under low oxygen increased carbon dioxide, with organic buffers efficient, large scale production; diagnosis/vaccine for rocky mountains spotted fever.
Patent number US5869335, 09-Feb-1999

PubMed=17662657; DOI=10.1016/j.pt.2007.07.009
Bell-Sakyi L., Zweygarth E., Blouin E.F., Gould E.A., Jongejan F.
Tick cell lines: tools for tick and tick-borne disease research.
Trends Parasitol. 23:450-457(2007)

PubMed=22743047; DOI=10.1016/j.ttbdis.2012.05.002
Alberdi M.P., Dalby M.J., Rodriguez-Andres J., Fazakerley J.K., Kohl A., Bell-Sakyi L.
Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines.
Ticks Tick Borne Dis. 3:137-146(2012)

PubMed=29886187; DOI=10.1016/j.ttbdis.2018.05.015
Bell-Sakyi L., Darby A., Baylis M., Makepeace B.L.
The Tick Cell Biobank: a global resource for in vitro research on ticks, other arthropods and the pathogens they transmit.
Ticks Tick Borne Dis. 9:1364-1371(2018)

PubMed=32778731; DOI=10.1038/s41598-020-70330-5
Kotsarenko K., Vechtova P., Lieskovska J., Fussy Z., Cabral-de-Mello D.C., Rego R.O.M., Alberdi P., Collins M., Bell-Sakyi L., Sterba J., Grubhoffer L.
Karyotype changes in long-term cultured tick cell lines.
Sci. Rep. 10:13443-13443(2020)
https://www.vectorbase.org/vbsearch/details/VBRNAseq_group_1255
ISE5CVCL_Z169//kliešť čiernonohýIxodes scapularis zvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línie/neurčenéembryonálne/Group: Tick cell line.
Misspelling: ISE25; In PubMed=8812616.
PubMed=8064520; DOI=10.2307/3283188
Munderloh U.G., Liu Y., Wang M.-M., Chen C.-S., Kurtti T.J.
Establishment, maintenance and description of cell lines from the tick Ixodes scapularis.
J. Parasitol. 80:533-543(1994)

PubMed=8812616; DOI=10.1006/jipa.1996.0050
Kurtti T.J., Munderloh U.G., Andreadis T.G., Magnarelli L.A., Mather T.N.
Tick cell culture isolation of an intracellular prokaryote from the tick Ixodes scapularis.
J. Invertebr. Pathol. 67:318-321(1996)

Patent=US5869335
Munderloh U.G., Kurtti T.J., Kocan K.M., Blouin E.F., Ewing S.A.
Propagating bovine parasite by incubation of undifferentiated cells under low oxygen increased carbon dioxide, with organic buffers efficient, large scale production; diagnosis/vaccine for rocky mountains spotted fever.
Patent number US5869335, 09-Feb-1999

PubMed=17662657; DOI=10.1016/j.pt.2007.07.009
Bell-Sakyi L., Zweygarth E., Blouin E.F., Gould E.A., Jongejan F.
Tick cell lines: tools for tick and tick-borne disease research.
Trends Parasitol. 23:450-457(2007)
/
ISE6CVCL_Z170//kliešť čiernonohýIxodes scapularis zvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línie/neurčenéembryonálne/Group: Tick cell line.
Omics: Deep proteome analysis.
Omics: Deep RNAseq analysis.
Omics: Metabolome analysis.
PubMed=8812616; DOI=10.1006/jipa.1996.0050
Kurtti T.J., Munderloh U.G., Andreadis T.G., Magnarelli L.A., Mather T.N.
Tick cell culture isolation of an intracellular prokaryote from the tick Ixodes scapularis.
J. Invertebr. Pathol. 67:318-321(1996)

Patent=US5869335
Munderloh U.G., Kurtti T.J., Kocan K.M., Blouin E.F., Ewing S.A.
Propagating bovine parasite by incubation of undifferentiated cells under low oxygen increased carbon dioxide, with organic buffers efficient, large scale production; diagnosis/vaccine for rocky mountains spotted fever.
Patent number US5869335, 09-Feb-1999

PubMed=16922866; DOI=10.1111/j.1462-5822.2006.00727.x
Singu V., Peddireddi L., Sirigireddy K.R., Cheng C.-M., Munderloh U.G., Ganta R.R.
Unique macrophage and tick cell-specific protein expression from the p28/p30-outer membrane protein multigene locus in Ehrlichia chaffeensis and Ehrlichia canis.
Cell. Microbiol. 8:1475-1487(2006)

PubMed=17662657; DOI=10.1016/j.pt.2007.07.009
Bell-Sakyi L., Zweygarth E., Blouin E.F., Gould E.A., Jongejan F.
Tick cell lines: tools for tick and tick-borne disease research.
Trends Parasitol. 23:450-457(2007)

PubMed=19242658; DOI=10.1007/s10493-009-9255-1
Billeter S.A., Diniz P.P.V.P., Battisti J.M., Munderloh U.G., Breitschwerdt E.B., Levy M.G.
Infection and replication of Bartonella species within a tick cell line.
Exp. Appl. Acarol. 49:193-208(2009)

PubMed=22743047; DOI=10.1016/j.ttbdis.2012.05.002
Alberdi M.P., Dalby M.J., Rodriguez-Andres J., Fazakerley J.K., Kohl A., Bell-Sakyi L.
Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines.
Ticks Tick Borne Dis. 3:137-146(2012)

PubMed=25894426; DOI=10.1007/s10493-015-9908-1
Oliver J.D., Chavez A.S.O., Felsheim R.F., Kurtti T.J., Munderloh U.G.
An Ixodes scapularis cell line with a predominantly neuron-like phenotype.
Exp. Appl. Acarol. 66:427-442(2015)

PubMed=26424601; DOI=10.1074/mcp.M115.051938
Villar M., Ayllon N., Alberdi P., Moreno A., Moreno M., Tobes R., Mateos-Hernandez L., Weisheit S., Bell-Sakyi L., de la Fuente J.
Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells.
Mol. Cell. Proteomics 14:3154-3172(2015)

PubMed=29886187; DOI=10.1016/j.ttbdis.2018.05.015
Bell-Sakyi L., Darby A., Baylis M., Makepeace B.L.
The Tick Cell Biobank: a global resource for in vitro research on ticks, other arthropods and the pathogens they transmit.
Ticks Tick Borne Dis. 9:1364-1371(2018)

PubMed=32158404; DOI=10.3389/fphys.2020.00152
Al-Rofaai A., Bell-Sakyi L.
Tick cell lines in research on tick control.
Front. Physiol. 11:152-152(2020)
https://www.liverpool.ac.uk/infection-and-global-health/research/tick-cell-biobank/tick-cell-lines/
KSTCVCL_6A74//tur domáciBos taurus zvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Konečné bunkové línie/neurčenéembryonálne//PubMed=24000610
Bekhzadpur D., Belousova R.V., Ivanov I.V.
Substantiation of optimum condition of parainfluenza-3 virus cultivation for production of vaccines on the finite cell line.
Voen. Med. Zh. 334:27-31(2013)
http://www.rccc.cytspb.rssi.ru/ecellbank/animal/akst.htm
LEKCVCL_F742//tur domáciBos taurus zvieraciaetickáLegkoye Embrion KorovaBunková línia využívaná pri produkcii vakcín//Konečné bunkové línie/neurčenéembryonálne//PubMed=24000610
Bekhzadpur D., Belousova R.V., Ivanov I.V.
Substantiation of optimum condition of parainfluenza-3 virus cultivation for production of vaccines on the finite cell line.
Voen. Med. Zh. 334:27-31(2013)
http://www.rccc.cytspb.rssi.ru/ecellbank/animal/alek.htm
MDCC-JMV-1CVCL_T449//kura bankivskáGallus galluszvieraciaetická/Bunková línia využívaná pri produkcii vakcínNCBI_TaxID; 10390; Gallid herpesvirus 2 (Marek's disease virus)/Rakovinové bunkové línie/neurčené//Group: Bird cell line. PubMed=208974
Munch D., Hohlstein L., Sevoian M.
In vitro establishment of Marek's disease herpesvirus-transformed productive and nonproductive lymphoblastoid cell lines.
Infect. Immun. 20:315-318(1978)

Patent=EP0244760A2
Sevoian M.
Vaccine for the prevention of Marek's disease.
Patent number EP0244760A2, 11-Nov-1987

PubMed=18766641; DOI=10.1080/03079458708436402
Nazerian K.
An updated list of avian cell lines and transplantable tumours.
Avian Pathol. 16:527-544(1987)

PubMed=18670936; DOI=10.1080/03079459208418839
Keller L.H., Lillehoj H.S., Solnosky J.M.
JMV-1 stimulation of avian natural killer cell activity.
Avian Pathol. 21:239-250(1992)
/
MDCKCVCL_0422ÁnoCVCL_4164 (DoCl1 (S+L-)) CVCL_WL43 (hCK) CVCL_YJ87 (LINTERNA MDCK)CVCL_GY95 (Luc9.1) CVCL_2A36 (MDCK 33016) CVCL_DF69 (MDCK 9B9-1B1)CVCL_DF70 (MDCK 9B9-1E4) CVCL_ZV91 (MDCK Actin-cpstFRET-Actin) CVCL_ZV92 (MDCK Actinin-C-cpstFRET)CVCL_ZV93 (MDCK Actinin-M-cpstFRET) CVCL_ZV90 (MDCK cpstFRET-Actin) CVCL_AP67 (MDCK Sky1023)CVCL_AP68 (MDCK Sky10234) CVCL_AP69 (MDCK Sky3851) CVCL_V359 (MDCK Tet-Off)CVCL_WL59 (MDCK-6A8) CVCL_K177 (MDCK-AD) CVCL_AP66 (MDCK-B-702)CVCL_AP70 (MDCK-C11) CVCL_0423 (MDCK-C7) CVCL_DF31 (MDCK-chAbcb1)CVCL_AQ31 (MDCK-E [Korea]) CVCL_Y089 (MDCK-E [Taiwan]) CVCL_AP75 (MDCK-F)CVCL_0592 (MDCK-I) CVCL_0424 (MDCK-II) CVCL_IZ19 (MDCK-P-gp)CVCL_JX35 (MDCK-Protein Free) CVCL_IQ72 (MDCK-S) CVCL_IQ73 (MDCK-SF101)CVCL_IQ74 (MDCK-SF102) CVCL_IQ75 (MDCK-SF103) CVCL_WL74 (MDCK-SFS)CVCL_Z936 (MDCK-SIAT1) CVCL_B033 (MDCK.1) CVCL_B034 (MDCK.2)CVCL_DE56 (MDCK.5F1) CVCL_2586 (MDCK.P3) CVCL_YZ44 (MDCK.STAT1 KO)CVCL_WL70 (MDCK.SUS1) CVCL_K241 (MDCK/60) CVCL_WC98 (MDCK/IgR)CVCL_WL76 (ssf-MDCK) CVCL_6452 (Super Dome) CVCL_6453 (Super Tube)pes domáciCanis (lupus) familiariszvieraciaetickáMDCK (NBL-2); NBL-2; Madin-Darby Canine Kidney; Madin Darby Canine KidneyBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Part of: Naval Biosciences Laboratory (NBL) collection (transferred to ATCC in 1982).
Caution: There seems to be two distinct cell lines which were assigned NCBI_Iran catalog number C426.
PubMed=13901412; DOI=10.1126/science.138.3536.42
Green I.J.
Serial propagation of influenza B (Lee) virus in a transmissible line of canine kidney cells.
Science 138:42-43(1962)

PubMed=5918973; DOI=10.3181/00379727-122-31293
Gaush C.R., Hard W.L., Smith T.F.
Characterization of an established line of canine kidney cells (MDCK).
Proc. Soc. Exp. Biol. Med. 122:931-935(1966)

PubMed=222773; DOI=10.1083/jcb.81.3.635
Rindler M.J., Chuman L.M., Shaffer L., Saier M.H. Jr.
Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK).
J. Cell Biol. 81:635-648(1979)

PubMed=12667817; DOI=10.1016/S0042-6822(02)00064-8
Romanova J., Katinger D., Ferko B., Voglauer R., Mochalova L., Bovin N., Lim W., Katinger H., Egorov A.
Distinct host range of influenza H3N2 virus isolates in Vero and MDCK cells is determined by cell specific glycosylation pattern.
Virology 307:90-97(2003)

PubMed=19941903; DOI=10.1016/j.jviromet.2009.11.022
Karger A., Bettin B., Lenk M., Mettenleiter T.C.
Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing.
J. Virol. Methods 164:116-121(2010)

PubMed=21819694
Omeir R.L., Teferedegne B., Foseh G.S., Beren J.J., Snoy P.J., Brinster L.R., Cook J.L., Peden K., Lewis A.M. Jr.
Heterogeneity of the tumorigenic phenotype expressed by Madin-Darby canine kidney cells.
Comp. Med. 61:243-250(2011)

PubMed=21982418; DOI=10.1186/1471-2121-12-43
Dukes J.D., Whitley P., Chalmers A.D.
The MDCK variety pack: choosing the right strain.
BMC Cell Biol. 12:43-43(2011)

PubMed=24058646; DOI=10.1371/journal.pone.0075014
Lugovtsev V.Y., Melnyk D., Weir J.P.
Heterogeneity of the MDCK cell line and its applicability for influenza virus research.
PLoS ONE 8:E75014-E75014(2013)

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)
https://en.wikipedia.org/wiki/Madin-Darby_Canine_Kidney_Cells
MDCK 33016CVCL_2A36CVCL_0422 (MDCK)CVCL_2A37 (MDCK 33016-PF)pes domáciCanis (lupus) familiariszvieraciaetickáMDCK-33016Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Registration: International Depositary Authority, Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ); ACC-2219 Patent=US6455298
Groner A., Vorlop J.
Animal cells and processes for the replication of influenza viruses.
Patent number US6455298, 24-Sep-2002

PubMed=18485545; DOI=10.1016/j.vaccine.2008.03.075
Gregersen J.-P.
A quantitative risk assessment of exposure to adventitious agents in a cell culture-derived subunit influenza vaccine.
Vaccine 26:3332-3340(2008)
/
MDCK 33016-PFCVCL_2A37CVCL_2A36 (MDCK 33016)/pes domáciCanis (lupus) familiariszvieraciaetickáMDCK 33016 PF; MDCK 33016PF; MDCK-33016PF; MDCK subline 33016-PFBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Biotechnology: Used for the production of the influenza vaccine Optaflu.PubMed=20071567; DOI=10.1128/JVI.01925-09
Suphaphiphat P., Keiner B., Trusheim H., Crotta S., Tuccino A.B., Zhang P., Dormitzer P.R., Mason P.W., Franti M.
Human RNA polymerase I-driven reverse genetics for influenza a virus in canine cells.
J. Virol. 84:3721-3725(2010)
/
MDCK 9B9-1B1CVCL_DF69CVCL_0422 (MDCK)/pes domáciCanis (lupus) familiariszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé//Patent=US8846032
Liu J., Schwartz R., Thompson M., Maranga L., Ghosh M., Subramanian A., Hsu S.S.-T.
MDCK cell lines supporting viral growth to high titers and bioreactor process using the same.
Patent number US8846032, 30-Sep-2014
/
MDCK 9B9-1E4CVCL_DF70CVCL_0422 (MDCK)/pes domáciCanis (lupus) familiariszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé// PubMed=20307595; DOI=10.1016/j.vaccine.2010.03.005
Hussain A.I., Cordeiro M., Sevilla E., Liu J.
Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: in vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells.
Vaccine 28:3848-3855(2010)

PubMed=22902973; DOI=10.1016/j.biologicals.2012.06.005
Vepachedu R.S., Menon A., Hussain A.I., Liu J.
Evaluation of tumorigenic potential of high yielding cloned MDCK cells for live-attenuated influenza vaccine using in vitro growth characteristics, metastatic gene expression and in vivo nude mice model.
Biologicals 40:482-494(2012)

Patent=US8846032
Liu J., Schwartz R., Thompson M., Maranga L., Ghosh M., Subramanian A., Hsu S.S.-T.
MDCK cell lines supporting viral growth to high titers and bioreactor process using the same.
Patent number US8846032, 30-Sep-2014
/
MDCK Sky1023CVCL_AP67CVCL_0422 (MDCK)/pes domáciCanis (lupus) familiariszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/ Group: Serum/protein free medium cell line.Patent=US9447383
Park Y.W., Lee K.S., Lee B.-Y., Park M., Kim H., Kim Y.-H., Lee S.-J.
MDCK-derived cell lines adapted to serum-free culture and suspension culture and method for preparing vaccine virus using the cells.
Patent number US9447383, 20-Sep-2016
/
MDCK Sky10234CVCL_AP68CVCL_0422 (MDCK)/pes domáciCanis (lupus) familiariszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Serum/protein free medium cell line.
Registration: International Depositary Authority, Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ); ACC-3114.
Patent=US9447383
Park Y.W., Lee K.S., Lee B.-Y., Park M., Kim H., Kim Y.-H., Lee S.-J.
MDCK-derived cell lines adapted to serum-free culture and suspension culture and method for preparing vaccine virus using the cells.
Patent number US9447383, 20-Sep-2016
/
MDCK Sky3851CVCL_AP69CVCL_0422 (MDCK)/pes domáciCanis (lupus) familiariszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Serum/protein free medium cell line.
Registration: International Depositary Authority, Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ); ACC-3113.
Patent=US9447383
Park Y.W., Lee K.S., Lee B.-Y., Park M., Kim H., Kim Y.-H., Lee S.-J.
MDCK-derived cell lines adapted to serum-free culture and suspension culture and method for preparing vaccine virus using the cells.
Patent number US9447383, 20-Sep-2016
/
MDCK-B-702CVCL_AP66CVCL_0422 (MDCK)/pes domáciCanis (lupus) familiariszvieraciaetickáB-702Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Serum/protein free medium cell line.
Registration: International Depositary Authority, Japanese National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology; FERM BP-7449.
Patent=US6825036
Makizumi K., Masuda K., Kino Y., Tokiyoshi S.
Cell usable in serum-free culture and suspension culture and process for producing virus for vaccine by using the cell.
Patent number US6825036, 30-Nov-2004
/
MDCK-ICVCL_0592CVCL_0422 (MDCK)CVCL_VR38 (gMDCKI) CVCL_GZ12 (MDCKts.src)pes domáciCanis (lupus) familiariszvieraciaetickáMDCK I; MDCKI; MDCK1; MDCK-1Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé// PubMed=21982418; DOI=10.1186/1471-2121-12-43
Dukes J.D., Whitley P., Chalmers A.D.
The MDCK variety pack: choosing the right strain.
BMC Cell Biol. 12:43-43(2011)

PubMed=24975811; DOI=10.1016/j.vaccine.2014.06.045
Donis R.O., Chen I.-M., Davis C.T., Foust A., Hossain M.J., Johnson A., Klimov A., Loughlin R., Xu X., Tsai T., Blayer S., Trusheim H., Colegate T., Fox J., Taylor B., Hussain A., Barr I., Baas C., Louwerens J., Geuns E., Lee M.-S., Venhuizen O., Neumeier E., Ziegler T.
Performance characteristics of qualified cell lines for isolation and propagation of influenza viruses for vaccine manufacturing.
Vaccine 32:6583-6590(2014)
/
MDCK-IICVCL_0424CVCL_0422 (MDCK)CVCL_WY48 (MDCK-17) CVCL_ZW00 (MDCK-A3-10) CVCL_ZW01 (MDCK-A3-14)CVCL_ZV47 (MDCK-A3-15) CVCL_S586 (MDCK-MDR1) CVCL_X022 (MDCK-MRP2)CVCL_VR40 (MDCKII-LE)pes domáciCanis (lupus) familiariszvieraciaetickáMDCK II; MDCKII; MDCK2; MDCK-2; MDCK Type II; MDCKII-WTBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Omics: Deep proteome analysis. PubMed=1468552; DOI=10.1016/0014-5793(92)81476-3
Grunberg J., Luginbuhl U., Sterchi E.E.
Proteolytic processing of human intestinal lactase-phlorizin hydrolase precursor is not a prerequisite for correct sorting in Madin Darby canine kidney (MDCK) cells.
FEBS Lett. 314:224-228(1992)

PubMed=19941903; DOI=10.1016/j.jviromet.2009.11.022
Karger A., Bettin B., Lenk M., Mettenleiter T.C.
Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing.
J. Virol. Methods 164:116-121(2010)

PubMed=21766308; DOI=10.1002/jps.22674
Di L., Whitney-Pickett C., Umland J.P., Zhang H., Zhang X., Gebhard D.F., Lai Y., Federico J.J. III, Davidson R.E., Smith R., Reyner E.L., Lee C., Feng B., Rotter C., Varma M.V., Kempshall S., Fenner K., El-Kattan A.F., Liston T.E., Troutman M.D.
Development of a new permeability assay using low-efflux MDCKII cells.
J. Pharm. Sci. 100:4974-4985(2011)

PubMed=21982418; DOI=10.1186/1471-2121-12-43
Dukes J.D., Whitley P., Chalmers A.D.
The MDCK variety pack: choosing the right strain.
BMC Cell Biol. 12:43-43(2011)

PubMed=24975811; DOI=10.1016/j.vaccine.2014.06.045
Donis R.O., Chen I.-M., Davis C.T., Foust A., Hossain M.J., Johnson A., Klimov A., Loughlin R., Xu X., Tsai T., Blayer S., Trusheim H., Colegate T., Fox J., Taylor B., Hussain A., Barr I., Baas C., Louwerens J., Geuns E., Lee M.-S., Venhuizen O., Neumeier E., Ziegler T.
Performance characteristics of qualified cell lines for isolation and propagation of influenza viruses for vaccine manufacturing.
Vaccine 32:6583-6590(2014)
/
MDCK.5F1CVCL_DE56CVCL_0422 (MDCK)/pes domáciCanis (lupus) familiariszvieraciaetickáBV-5F1; BV5F1Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé//PubMed=10494965
Percheson P.B., Trepanier P., Dugre R., Mabrouk T.
A phase I, randomized controlled clinical trial to study the reactogenicity and immunogenicity of a new split influenza vaccine derived from a non-tumorigenic cell line.
Dev. Biol. Stand. 98:127-132(1999)

Patent=US20080254067
Trepanier P., Dugre R., Hassell T.
Process for the production of an influenza vaccine.
Patent number US20080254067, 16-Oct-2008
/
MDCK.STAT1 KOCVCL_YZ44CVCL_0422 (MDCK)/pes domáciCanis (lupus) familiariszvieraciaetickáMDCK.STAT1KOBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Characteristics: Excellent cell model for virus propagation and viral vaccine production. It exhibits significant increased viral titer and enhanced virus production capability when compared to its parental cell line (ATCC).
Doubling time: ~22 hours (ATCC).
Knockout cell: Method=CRISPR/Cas9; UniProtKB; E2RI87; STAT1.
//
MDCK.SUS1CVCL_WL70CVCL_0422 (MDCK)CVCL_WL71 (MDCK.SUS2)pes domáciCanis (lupus) familiariszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Serum/protein free medium cell line.
Characteristics: Adapted to growth in suspension in SMIF8 medium.
Doubling time: ~50 hours (PubMed=20638458).
PubMed=20638458; DOI=10.1016/j.vaccine.2010.07.004
Lohr V., Genzel Y., Behrendt I., Scharfenberg K., Reichl U.
A new MDCK suspension line cultivated in a fully defined medium in stirred-tank and wave bioreactor.
Vaccine 28:6256-6264(2010)
/
MDCK.SUS2CVCL_WL71(CVCL_WL70) MDCK.SUS1 CVCL_WL72 (MDCK.Xeno)pes domáciCanis (lupus) familiariszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Serum/protein free medium cell line.
Characteristics: Adapted to growth in suspension in SMIF8 medium.
Doubling time: 24 hours (in wave bioreactor), 37 hours (in stirred-tank reactor) (PubMed=20638458).
PubMed=20638458; DOI=10.1016/j.vaccine.2010.07.004
Lohr V., Genzel Y., Behrendt I., Scharfenberg K., Reichl U.
A new MDCK suspension line cultivated in a fully defined medium in stirred-tank and wave bioreactor.
Vaccine 28:6256-6264(2010)

PubMed=25994255; DOI=10.1007/s00253-015-6636-8
Castro R., Fernandes P., Laske T., Sousa M.F.Q., Genzel Y., Scharfenberg K., Alves P.M., Coroadinha A.S.
Production of canine adenovirus type 2 in serum-free suspension cultures of MDCK cells.
Appl. Microbiol. Biotechnol. 99:7059-7068(2015)

PubMed=31047676; DOI=10.1016/j.vaccine.2019.04.054
Bissinger T., Fritsch J., Mihut A., Wu Y.-X., Liu X.-P., Genzel Y., Tan W.-S., Reichl U.
Semi-perfusion cultures of suspension MDCK cells enable high cell concentrations and efficient influenza A virus production.
Vaccine 37:7003-7010(2019)
/
MDCK.XenoCVCL_WL72CVCL_WL71 (MDCK.SUS2)/pes domáciCanis (lupus) familiariszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospeléGroup: Serum/protein free medium cell line.
Characteristics: Adapted to growth in supsension in Xeno-S001S medium.
Doubling time: <20 hours (PubMed=31047676).
PubMed=31047676; DOI=10.1016/j.vaccine.2019.04.054
Bissinger T., Fritsch J., Mihut A., Wu Y.-X., Liu X.-P., Genzel Y., Tan W.-S., Reichl U.
Semi-perfusion cultures of suspension MDCK cells enable high cell concentrations and efficient influenza A virus production.
Vaccine 37:7003-7010(2019)
MFF-8C1CVCL_1K31 CVCL_R912 (MFF-1)/ostriež čínskySiniperca chuatsizvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línie/neurčenéikra/Group: Fish cell line. PubMed=24101440; DOI=10.1007/s10616-013-9642-7
Dong C.-F., Shuang F., Weng S.-P., He J.-G.
Cloning of a new fibroblast cell line from an early primary culture from mandarin fish (Siniperca chuatsi) fry for efficient proliferation of megalocytiviruses.
Cytotechnology 66:883-890(2014)

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)
/
MRC-5CVCL_0440ÁnoCVCL_2264 (1221) CVCL_2837 (A9(Neo1)) CVCL_2838 (A9(Neo11))
CVCL_2844 (A9(Neo19)) CVCL_2846 (A9(Neo20)) CVCL_2848 (A9(Neo4))
CVCL_WT86 (AG27415) CVCL_F664 (Flow13000) CVCL_JG29 (HuS-L12/10)
CVCL_4W54 (HuSI-L23) CVCL_RG58 (iPSC D1) CVCL_RG59 (iPSC D4)
CVCL_RB14 (IRR-MRC-5) CVCL_4W64 (L12.28-1/1) CVCL_U651 (L12.9-2(1))
CVCL_U661 (L23immo) CVCL_E260 (MRC-5 CV1) CVCL_2621 (MRC-5 pd13)
CVCL_2622 (MRC-5 pd19) CVCL_2623 (MRC-5 pd25) CVCL_2624 (MRC-5 pd30)
CVCL_JF54 (MRC-5 PDL12) CVCL_H749 (MRC-5 PDL27) CVCL_H748 (MRC-5 PDL40)
CVCL_8B13 (MRC-5 PDL5.51) CVCL_2625 (MRC-5 SV1 TG1) CVCL_2626 (MRC-5 SV1 TG2)
CVCL_3027 (MRC-5-30) CVCL_3028 (MRC-5-40) CVCL_3029 (MRC-5-50)
CVCL_D690 (MRC-5V1) CVCL_2627 (MRC-5V2) CVCL_D923 (MRC-iPS-1)
CVCL_D924 (MRC-iPS-10) CVCL_D925 (MRC-iPS-100) CVCL_D926 (MRC-iPS-101)
CVCL_8343 (MRC-iPS-11) CVCL_D927 (MRC-iPS-12) CVCL_D928 (MRC-iPS-13)
CVCL_D929 (MRC-iPS-14) CVCL_D930 (MRC-iPS-15) CVCL_D931 (MRC-iPS-16)
CVCL_D932 (MRC-iPS-17) CVCL_8367 (MRC-iPS-18) CVCL_D933 (MRC-iPS-19)
CVCL_D934 (MRC-iPS-2) CVCL_D935 (MRC-iPS-20) CVCL_D936 (MRC-iPS-21)
CVCL_8426 (MRC-iPS-22) CVCL_D937 (MRC-iPS-23) CVCL_D938 (MRC-iPS-24)
CVCL_8433 (MRC-iPS-25) CVCL_D939 (MRC-iPS-26) CVCL_8434 (MRC-iPS-27)
CVCL_D940 (MRC-iPS-28) CVCL_D941 (MRC-iPS-29) CVCL_D942 (MRC-iPS-3)
CVCL_D943 (MRC-iPS-30) CVCL_D944 (MRC-iPS-31) CVCL_D945 (MRC-iPS-32)
CVCL_D946 (MRC-iPS-33) CVCL_D947 (MRC-iPS-34) CVCL_D948 (MRC-iPS-35)
CVCL_D949 (MRC-iPS-36) CVCL_D950 (MRC-iPS-37) CVCL_D951 (MRC-iPS-38)
CVCL_D952 (MRC-iPS-39) CVCL_D953 (MRC-iPS-4) CVCL_D954 (MRC-iPS-40)
CVCL_D955 (MRC-iPS-41) CVCL_D956 (MRC-iPS-42) CVCL_D957 (MRC-iPS-43)
CVCL_D958 (MRC-iPS-44) CVCL_D959 (MRC-iPS-45) CVCL_D960 (MRC-iPS-46)
CVCL_D961 (MRC-iPS-47) CVCL_D962 (MRC-iPS-48) CVCL_D963 (MRC-iPS-49)
CVCL_D964 (MRC-iPS-5) CVCL_D965 (MRC-iPS-50) CVCL_D966 (MRC-iPS-51)
CVCL_D967 (MRC-iPS-52) CVCL_D968 (MRC-iPS-53) CVCL_D969 (MRC-iPS-54)
CVCL_D970 (MRC-iPS-55) CVCL_D971 (MRC-iPS-56) CVCL_D972 (MRC-iPS-57)
CVCL_D973 (MRC-iPS-58) CVCL_D974 (MRC-iPS-59) CVCL_D975 (MRC-iPS-6)
CVCL_D976 (MRC-iPS-60) CVCL_D977 (MRC-iPS-61) CVCL_D978 (MRC-iPS-62)
CVCL_D979 (MRC-iPS-63) CVCL_D980 (MRC-iPS-64) CVCL_D981 (MRC-iPS-65)
CVCL_D982 (MRC-iPS-66) CVCL_D983 (MRC-iPS-67) CVCL_D984 (MRC-iPS-68)
CVCL_D985 (MRC-iPS-69) CVCL_D986 (MRC-iPS-7) CVCL_D987 (MRC-iPS-70)
CVCL_D988 (MRC-iPS-71) CVCL_D989 (MRC-iPS-72) CVCL_D990 (MRC-iPS-73)
CVCL_D991 (MRC-iPS-74) CVCL_D992 (MRC-iPS-75) CVCL_D993 (MRC-iPS-76)
CVCL_D994 (MRC-iPS-77) CVCL_D995 (MRC-iPS-78) CVCL_D996 (MRC-iPS-79)
CVCL_D997 (MRC-iPS-8) CVCL_D998 (MRC-iPS-80) CVCL_D999 (MRC-iPS-81)
CVCL_E000 (MRC-iPS-82) CVCL_E001 (MRC-iPS-83) CVCL_E002 (MRC-iPS-84)
CVCL_E003 (MRC-iPS-85) CVCL_E004 (MRC-iPS-86) CVCL_E005 (MRC-iPS-87)
CVCL_E006 (MRC-iPS-88) CVCL_E007 (MRC-iPS-89) CVCL_E008 (MRC-iPS-9)
CVCL_E009 (MRC-iPS-90) CVCL_E010 (MRC-iPS-91) CVCL_E011 (MRC-iPS-92)
CVCL_E012 (MRC-iPS-93) CVCL_E013 (MRC-iPS-94) CVCL_E014 (MRC-iPS-95)
CVCL_E015 (MRC-iPS-96) CVCL_E016 (MRC-iPS-97) CVCL_E017 (MRC-iPS-98)
CVCL_E018 (MRC-iPS-99) CVCL_C975 (MRC5-iPS12) CVCL_C974 (MRC5-iPS17)
CVCL_V234 (MRC5-iPS2) CVCL_C976 (MRC5-RiPS-1.11) CVCL_C977 (MRC5-RiPS-1.2)
CVCL_C978 (MRC5-RiPS-1.3) CVCL_C979 (MRC5-RiPS-1.8) CVCL_C980 (MRC5-RiPS-1.9)
CVCL_Y625 (SR2)
človekHomo sapiensľudskáneetickáMRC5; MRC 5; MRCV; MRC-V; Medical Research Council cell strain-5Bunková línia využívaná pri produkcii vakcín//Konečné bunkové líniepľúcnemužskéembryonálne14 fetálny týždeňBiotechnology: Used for the production of the Human Diploid Cell Vaccine (HDCV) against rabies (Trade name: Imovax Rabies).
Biotechnology: Used for the production of the Hepatitis A vaccines Avaxim, Epaxal, Havrix and Vaqta.
Biotechnology: Used for the production of the live varicella virus vaccine (Trade name: Varivax).
Biotechnology: Used for the production of the live zoster vaccine (Trade name: Zostavax).
Characteristics: Senesces at 26 PDL (PubMed=17395773).
Doubling time: ~34 hours (lot 06022011), ~1.5 days (lot 05202005), ~2 days (lot 05192003), 36 hours (lot 041392), ~5 days (lot 031098), ~38 hours (lot 04212016) (JCRB).
Omics: DNA methylation analysis.
Omics: Glycosphingolipids analysis.
Omics: Proteome analysis by 2D-DE.
Omics: Proteome analysis by 2D-DE/MS.
Omics: Transcriptome analysis.
Misspelling: MCR-5; Occasionally.
PubMed=4316953; DOI=10.1038/227168a0
Jacobs J.P., Jones C.M., Baille J.P.
Characteristics of a human diploid cell designated MRC-5.
Nature 227:168-170(1970)

PubMed=932048; DOI=10.1016/0092-1157(76)90018-4
Jacobs J.P.
The status of human diploid cell strain MRC-5 as an approved substrate for the production of viral vaccines.
J. Biol. Stand. 4:97-99(1976)

PubMed=1031681
Jacobs J.P.
Updated results on the karyology of the WI-38, MRC-5 and MRC-9 cell strains.
Dev. Biol. Stand. 37:155-156(1976)

PubMed=211143
Friedman H.M., Koropchak C.
Comparison of WI-38, MRC-5, and IMR-90 cell strains for isolation of viruses from clinical specimens.
J. Clin. Microbiol. 7:368-371(1978)

PubMed=7065527; DOI=10.1164/arrd.1982.125.2.222
Hay R.J., Williams C.D., Macy M.L., Lavappa K.S.
Cultured cell lines for research on pulmonary physiology available through the American Type Culture Collection.
Am. Rev. Respir. Dis. 125:222-232(1982)

PubMed=6538202; DOI=10.1083/jcb.98.3.1133
Azzarone B., Suarez H., Mingari M.-C., Moretta L., Fauci A.S.
4F2 monoclonal antibody recognizes a surface antigen on spread human fibroblasts of embryonic but not of adult origin.
J. Cell Biol. 98:1133-1137(1984)

PubMed=3335022
Alley M.C., Scudiero D.A., Monks A., Hursey M.L., Czerwinski M.J., Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
Cancer Res. 48:589-601(1988)

PubMed=1965304; DOI=10.1002/elps.1150111203
Celis J.E., Dejgaard K., Madsen P., Leffers H., Gesser B., Honore B., Rasmussen H.H., Olsen E., Lauridsen J.B., Ratz G., Mouritzen S., Basse B., Hellerup M., Celis A., Puype M., Van Damme J., Vandekerckhove J.
The MRC-5 human embryonal lung fibroblast two-dimensional gel cellular protein database: quantitative identification of polypeptides whose relative abundance differs between quiescent, proliferating and SV40 transformed cells.
Electrophoresis 11:1072-1113(1990)

PubMed=10752125
Polianskaia G.G., Efremova T.N., Sakuta G.A.
The effect of mycoplasmal contamination of human embryonic lung cell line MRC-5 on the karyotypic variability.
Tsitologiia 42:190-195(2000)

PubMed=17395773; DOI=10.1634/stemcells.2006-0504
Sudo K., Kanno M., Miharada K., Ogawa S., Hiroyama T., Saijo K., Nakamura Y.
Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations.
Stem Cells 25:1610-1617(2007)

PubMed=19657000
Rubporn A., Srisomsap C., Subhasitanont P., Chokchaichamnankit D., Chiablaem K., Svasti J., Sangvanich P.
Comparative proteomic analysis of lung cancer cell line and lung fibroblast cell line.
Cancer Genomics Proteomics 6:229-237(2009)

PubMed=21637780; DOI=10.1371/journal.pgen.1002085
Nishino K., Toyoda M., Yamazaki-Inoue M., Fukawatase Y., Chikazawa E., Sakaguchi H., Akutsu H., Umezawa A.
DNA methylation dynamics in human induced pluripotent stem cells over time.
PLoS Genet. 7:E1002085-E1002085(2011)

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)

PubMed=26477663; DOI=10.1038/srep14988
Ojima T., Shibata E., Saito S., Toyoda M., Nakajima H., Yamazaki-Inoue M., Miyagawa Y., Kiyokawa N., Fujimoto J.I., Sato T., Umezawa A.
Glycolipid dynamics in generation and differentiation of induced pluripotent stem cells.
Sci. Rep. 5:14988-14988(2015)

CLPUB00391
Wadman M.
The vaccine race: science, politics, and the human costs of defeating disease.
(In) ISBN 9780525427537; pp.1-436; Viking; New York (2016)
https://en.wikipedia.org/wiki/MRC-5
MRC-5 PDL12CVCL_JF54CVCL_0440 (MRC-5)/človekHomo sapiensľudskáneetickáWHO MRC-5Bunková línia využívaná pri produkcii vakcín//Konečné bunkové líniepľúcnemužskéembryonálne14 fetálny týždeň//http://www.who.int/biologicals/areas/vaccines/WHO_reference_cell_banks/en/
PBG.PK-21CVCL_WJ92//diviak lesnýSus scrofa zvieraciaetickáPBG.PK2.1Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línie/neurčené//From: ProBioGen AG; Berlin; Germany.
Characteristics: Free from porcine circovirus 1 (PCV1) infection.
PubMed=31005427; DOI=10.1016/j.vaccine.2019.04.030
Granicher G., Coronel J., Pralow A., Marichal-Gallardo P., Wolff M., Rapp E., Karlas A., Sandig V., Genzel Y., Reichl U.
Efficient influenza A virus production in high cell density using the novel porcine suspension cell line PBG.PK2.1.
Vaccine 37:7019-7028(2019)
/
PBS-1CVCL_1K16CVCL_Y589 (CHCC-OU2)CVCL_1K17 (PBS-12SF)kura bankivskáGallus galluszvieraciaetická/Bunková línia využívaná pri produkcii vakcínChEBI; CHEBI:21759; N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)/Transformované bunkové línie/neurčenéembryonálne/Group: Bird cell line. PubMed=18524432; DOI=10.1016/j.vaccine.2008.04.048
Smith K.A., Colvin C.J., Weber P.S.D., Spatz S.J., Coussens P.M.
High titer growth of human and avian influenza viruses in an immortalized chick embryo cell line without the need for exogenous proteases.
Vaccine 26:3778-3782(2008)

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)

DOI=10.4172/2157-7560.1000345
Sporer K.R.B., Carter J.L., Coussens P.M.
The PBS-12SF cell line: development of an alternative cell line for influenza vaccine production.
J. Vaccines Vaccin. 7:345-345(2016)
/
PBS-12SFCVCL_1K17CVCL_Y589 (CHCC-OU2)CVCL_1K17 (PBS-12SF)kura bankivskáGallus galluszvieraciaetická/Bunková línia využívaná pri produkcii vakcínChEBI; CHEBI:21759; N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)/Transformované bunkové línie/neurčenéembryonálne/Group: Bird cell line. PubMed=18524432; DOI=10.1016/j.vaccine.2008.04.048
Smith K.A., Colvin C.J., Weber P.S.D., Spatz S.J., Coussens P.M.
High titer growth of human and avian influenza viruses in an immortalized chick embryo cell line without the need for exogenous proteases.
Vaccine 26:3778-3782(2008)

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)

DOI=10.4172/2157-7560.1000345
Sporer K.R.B., Carter J.L., Coussens P.M.
The PBS-12SF cell line: development of an alternative cell line for influenza vaccine production.
J. Vaccines Vaccin. 7:345-345(2016)
/
PER.C6CVCL_G704ÁnoCVCL_A9E7 (HP PER.C6)človekHomo sapiensľudskáneetickáPer.C6; PER C6; PERC6; PerC6; Perc6; PER cell clone 6Bunková línia využívaná pri produkcii vakcínNCBI_TaxID; 28285; Adenovirus 5 [E1A/E1B]/Transformované bunkové línieočnéneurčenéembryonálne/From: Crucell (now part of Johnson & Johnson Janssen).
Registration: International Depositary Authority, European Collection of Cell Cultures (ECACC); 96022940.
Biotechnology: Used for the production of follitropin delta (Trade name: Rekovelle).
Misspelling: Per.Co6; Occasionally.
Derived from sampling site: Eye; retina; retinoblast. Originate from same individual CVCL_1K15 ! 911
PubMed=9741429; DOI=10.1089/hum.1998.9.13-1909
Fallaux F.J., Bout A., van der Velde I., van den Wollenberg D.J.M., Hehir K.M., Keegan J., Auger C., Cramer S.J., van Ormondt H., van der Eb A.J., Valerio D., Hoeben R.C.
New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses.
Hum. Gene Ther. 9:1909-1917(1998)

PubMed=11257414; DOI=10.1016/S0264-410X(00)00508-9
Pau M.G., Ophorst C., Koldijk M.H., Schouten G., Mehtali M., Uytdehaag F.
The human cell line PER.C6 provides a new manufacturing system for the production of influenza vaccines.
Vaccine 19:2716-2721(2001)

Patent=US6602706
Fallaux F.J., Hoeben R.C., van der Eb A.J., Bout A., Valerio D.
Packaging systems for human recombinant adenovirus to be used in gene therapy.
Patent number US6602706, 05-Aug-2003

PubMed=16566444
Lewis J.A., Brown E.L., Duncan P.A.
Approaches to the release of a master cell bank of PER.C6 cells; a novel cell substrate for the manufacture of human vaccines.
Dev. Biol. (Basel) 123:165-176(2006)

PubMed=18052336; DOI=10.1021/bp070258u
Berdichevsky M., Gentile M.P., Hughes B., Meis P., Peltier J., Blumentals I., Aunins J., Altaras N.E.
Establishment of higher passage PER.C6 cells for adenovirus manufacture.
Biotechnol. Prog. 24:158-165(2008)

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)

Patent=US9469865
Zijlstra G.M., Hof R.P., Schilder J.
Process for the culturing of cells.
Patent number US9469865, 18-Oct-2016

PubMed=28450423; DOI=10.1530/EC-17-0067
Koechling W., Plaksin D., Croston G.E., Jeppesen J.V., Macklon K.T., Andersen C.Y.
Comparative pharmacology of a new recombinant FSH expressed by a human cell line.
Endocr. Connect. 6:297-305(2017)
https://web.archive.org/web/20140721200546/http://www.crucell.com/page/downloads/Factsheet_PER.C6_Technology.pdf
911CVCL_1K15//človekHomo sapiensľudskáneetická HER;911; HER911; Human Embryonic Retinoblasts 911Pomocné bunkové línieNCBI_TaxID; 28285; Adenovirus 5 [E1]/Transformované bunkové línieočnéneurčenéembryonálne/Registration: International Depositary Authority, European Collection of Cell Cultures (ECACC); 95062101.
Derived from sampling site: Eye; retina; retinoblast. Originate from same individual CVCL_G704 ! PER.C6
PubMed=8788172; DOI=10.1089/hum.1996.7.2-215
Fallaux F.J., Kranenburg O., Cramer S.J., Houweling A., van Ormondt H., Hoeben R.C., van der Eb A.J.
Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors.
Hum. Gene Ther. 7:215-222(1996)

Patent=US6602706
Fallaux F.J., Hoeben R.C., van der Eb A.J., Bout A., Valerio D.
Packaging systems for human recombinant adenovirus to be used in gene therapy.
Patent number US6602706, 05-Aug-2003
/
PK-15SCVCL_YB14CVCL_2160 (PK-15)/diviak lesnýSus scrofa zvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovémužskédospelé/Group: Serum/protein free medium cell line.
Registration: International Depositary Authority, Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ); ACC-3307.
Patent=US20190300863
Jordan I., Sandig V., Horn D., John K.
Novel porcine cell line for virus production.
Patent number US20190300863, 03-Oct-2019
/
PT-80CVCL_4629//tur domáciBos taurus zvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Konečné bunkové línieobličkovéneurčené///PubMed=24000610
Bekhzadpur D., Belousova R.V., Ivanov I.V.
Substantiation of optimum condition of parainfluenza-3 virus cultivation for production of vaccines on the finite cell line.
Voen. Med. Zh. 334:27-31(2013)
/
QN10SCVCL_UG18CVCL_UG12 (AH927)/mačka domácaFelis silvestris catuszvieraciaetickáS+L- AH927Bunková línia využívaná pri produkcii vakcínNCBI_TaxID; 11801; Moloney murine leukemia virus (MoMuLV)/Transformované bunkové línie/neurčenéembryonálne/Derived from sampling site: Fibroblast. PubMed=8825325; DOI=10.1136/vr.138.1.7
Jarrett O., Ganiere J.-P.
Comparative studies of the efficacy of a recombinant feline leukaemia virus vaccine.
Vet. Rec. 138:7-11(1996)

PubMed=19122411; DOI=10.1292/jvms.70.1383
Sakaguchi S., Baba K., Ishikawa M., Yoshikawa R., Shojima T., Miyazawa T.
Focus assay on RD114 virus in QN10S cells.
J. Vet. Med. Sci. 70:1383-1386(2008)

PubMed=21029758; DOI=10.1016/j.virusres.2010.10.020
Okada M., Yoshikawa R., Shojima T., Baba K., Miyazawa T.
Susceptibility and production of a feline endogenous retrovirus (RD-114 virus) in various feline cell lines.
Virus Res. 155:268-273(2011)
/
QOR/2E11CVCL_1K18//Prepelica virgínskaColinus / Tetrao virginianuszvieraciaetická/Bunková línia využívaná pri produkcii vakcínNCIt; C17231; Ultraviolet radiation/Transformované bunkové línie/neurčenéembryonálne/Group: Bird cell line. PubMed=22373530; DOI=10.1186/1753-6561-5-S8-P52
Kraus B., von Fircks S., Feigl S., Koch S.M., Fleischanderl D., Terler K., Dersch-Pourmojib M., Konetschny C., Grillberger L., Reiter M.
Avian cell line - technology for large scale vaccine production.
BMC Proc. 5 Suppl. 8:P52-P52(2011)

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)
/
Sf9CVCL_0549CVCL_0518 (Sf21)CVCL_1D71 (Sf-9ET) CVCL_JF76 (Sf-RVN) CVCL_JX36 (Sf9 TiterHigh AC free)
CVCL_UF23 (sf9-ht33) CVCL_UF24 (sf9-ht35) CVCL_Z457 (Sf9-P35AcV5-1)
CVCL_Z458 (Sf9-P35AcV5-3) CVCL_4U10 (Sf900+) CVCL_Z459 (Sf9S)
CVCL_Z364 (Sfbeta4GalT) CVCL_Z454 (VE-CL-01) CVCL_Z455 (VE-CL-02)
CVCL_Z456 (VE-CL-03)
červ armádnySpodoptera frugiperdazvieraciaetickáSF9; sf9; SF-9; Sf-9; sf-9; Sf 9; Spodoptera frugiperda clone 9; Sf clone 9; IPLB-Sf-9AE; IPLB-SF-9AE; IPLB-SF-9; IPLB-Sf-9; IPLB-Sf9Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línievaječníkovéženskékukla/Group: Insect cell line.
Group: Recombinant protein production insect cell line.
Group: Space-flown cell line (cellonaut).
Doubling time: 27 hours (PubMed=21667340); ~50 hours (DSMZ).
Karyotypic information: Heterogeneous, contains a mixture of diploid and tetraploid cells.
Omics: ESTs sequenced.
Omics: Transcriptome analysis.
Omics: Genome sequenced.
Anecdotal: Have been flown in space on shuttle flights STS-50 (USML-1), STS-54 and STS-57 (Spacehab-1) to study growth in microgravity (PubMed=8050503).
Caution: The SfRV rhabdovirus found in Sf9 cells of ATCC CRL-1711 lot 5807852 (PubMed=24672045) does not seem to be expressed in CRL-1711 lot 5814 from 1987 (PubMed=28423032). The SfRV genome is integrated in the Sf9 genome.
Derived from sampling site: Ovary.
PubMed=1367489; DOI=10.1021/bp00007a002
Hink W.F., Thomsen D.R., Davidson D.J., Meyer A.L., Castellino F.J.
Expression of three recombinant proteins using baculovirus vectors in 23 insect cell lines.
Biotechnol. Prog. 7:9-14(1991)

PubMed=1369220; DOI=10.1021/bp00017a003
Wickham T.J., Davis T., Granados R.R., Shuler M.L., Wood H.A.
Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system.
Biotechnol. Prog. 8:391-396(1992)

PubMed=8314732; DOI=10.1007/BF02633986
Davis T.R., Wickham T.J., McKenna K.A., Granados R.R., Shuler M.L., Wood H.A.
Comparative recombinant protein production of eight insect cell lines.
In Vitro Cell. Dev. Biol. Anim. 29:388-390(1993)

PubMed=8050503; DOI=10.1006/excr.1994.1223
Moos P.J., Fattaey H.K., Johnson T.C.
Cell proliferation inhibition in reduced gravity.
Exp. Cell Res. 213:458-462(1994)

PubMed=7615077; DOI=10.1016/0014-5793(95)00640-u
Tremblay G.B., Sohi S.S., Retnakaran A., MacKenzie R.E.
NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase is targeted to the cytoplasm in insect cell lines.
FEBS Lett. 368:177-182(1995)

PubMed=8799737; DOI=10.1111/j.1365-2583.1996.tb00053.x
McIntosh A.H., Grasela J.J., Matteri R.L.
Identification of insect cell lines by DNA amplification fingerprinting (DAF).
Insect Mol. Biol. 5:187-195(1996)

PubMed=10777062; DOI=10.1290/1071-2690(2000)036<0205:EOTGFP>2.0.CO;2
Grasela J.J., McIntosh A.H., Goodman C.L., Wilson L.E., King L.A.
Expression of the green fluorescent protein carried by Autographa californica multiple nucleopolyhedrovirus in insect cell lines.
In Vitro Cell. Dev. Biol. Anim. 36:205-210(2000)

DOI=10.11416/jibs2001.71.25
Iwahori S., Ikeda M., Kobayashi M.
Comparative characterization of pcna genes from Hyphantria cunea nucleopolyhedrovirus, and two cell lines from the fall armyworm, Spodoptera frugiperda, and the fall webworm, Hyphantria cunea.
J. Insect Biotech. Sericol. 71:25-34(2002)

PubMed=12052082; DOI=10.1021/bp020028
Jarman-Smith R.F., Armstrong S.J., Mannix C.J., Al-Rubeai M.
Chromosome instability in Spodoptera frugiperda Sf-9 cell line.
Biotechnol. Prog. 18:623-628(2002)

PubMed=14668217; DOI=10.1093/bioinformatics/btg324
Landais I., Ogliastro M., Mita K., Nohata J., Lopez-Ferber M., Duonor-Cerutti M., Shimada T., Fournier P., Devauchelle G.
Annotation pattern of ESTs from Spodoptera frugiperda Sf9 cells and analysis of the ribosomal protein genes reveal insect-specific features and unexpectedly low codon usage bias.
Bioinformatics 19:2343-2350(2003)

PubMed=19003226; DOI=10.1023/B:CYTO.0000043394.40309.48
Jarman-Smith R.F., Mannix C.J., Al-Rubeai M.
Characterisation of tetraploid and diploid clones of Spodoptera frugiperda cell line.
Cytotechnology 44:15-25(2004)

PubMed=15926859; DOI=10.1290/0412081.1
Chen Y.P., Gundersen-Rindal D.E., Lynn D.E.
Baculovirus-based expression of an insect viral protein in 12 different insect cell lines.
In Vitro Cell. Dev. Biol. Anim. 41:43-49(2005)

DOI=10.3923/jas.2007.4040.4043
Sadeq K.N.A., Yao H.-C., Peng J.-X.
Identification of insect cell lines from 8 lepidopteran species by DNA amplification fingerprinting.
J. Appl. Sci. 7:4040-4044(2007)

DOI=10.1111/j.1439-0418.2010.01574.x
Wu C.-Y., Lin H.-F., Wang C.-H., Lo C.-F.
Identification of insect cell lines and cell-line cross-contaminations by nuclear ribosomal ITS sequences.
J. Appl. Entomol. 135:601-610(2010)

PubMed=19941903; DOI=10.1016/j.jviromet.2009.11.022
Karger A., Bettin B., Lenk M., Mettenleiter T.C.
Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing.
J. Virol. Methods 164:116-121(2010)

PubMed=20300881; DOI=10.1007/s12033-010-9268-3
Krammer F., Schinko T., Palmberger D., Tauer C., Messner P., Grabherr R.
Trichoplusia ni cells (High Five) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines.
Mol. Biotechnol. 45:226-234(2010)

PubMed=21667340; DOI=10.1007/s12250-011-3177-x
Wu Y.-L., Jiang L., Hashimoto Y., Granados R.R., Li G.-X.
Establishment, growth kinetics, and susceptibility to AcMNPV of heat tolerant lepidopteran cell lines.
Virol. Sin. 26:198-205(2011)

PubMed=23891577; DOI=10.1016/j.tiv.2013.07.007
Curtis T.M., Collins A.M., Gerlach B.D., Brennan L.M., Widder M.W., van der Schalie W.H., Vo N.T.K., Bols N.C.
Suitability of invertebrate and vertebrate cells in a portable impedance-based toxicity sensor: temperature mediated impacts on long-term survival.
Toxicol. In Vitro 27:2061-2066(2013)

PubMed=24375231; DOI=10.1007/s10529-013-1429-6
Wilde M., Klausberger M., Palmberger D., Ernst W., Grabherr R.
Tnao38, high five and Sf9 -- evaluation of host-virus interactions in three different insect cell lines: baculovirus production and recombinant protein expression.
Biotechnol. Lett. 36:743-749(2014)

PubMed=24672045; DOI=10.1128/JVI.00780-14
Ma H., Galvin T.A., Glasner D.R., Shaheduzzaman S., Khan A.S.
Identification of a novel rhabdovirus in Spodoptera frugiperda cell lines.
J. Virol. 88:6576-6585(2014)

PubMed=28423032; DOI=10.1371/journal.pone.0175633
Hashimoto Y., Macri D., Srivastava I., McPherson C., Felberbaum R., Post P., Cox M.
Complete study demonstrating the absence of rhabdovirus in a distinct Sf9 cell line.
PLoS ONE 12:E0175633-E0175633(2017)

PubMed=28839023; DOI=10.1128/genomeA.00829-17
Nandakumar S., Ma H., Khan A.S.
Whole-genome sequence of the Spodoptera frugiperda Sf9 insect cell line.
Genome Announc. 5:e00829.17-e00829.17(2017)

PubMed=29038528; DOI=10.1038/s41598-017-12713-9
Shu B.-S., Zhang J.-J., Sethuraman V., Cui G.-F., Yi X., Zhong G.-H.
Transcriptome analysis of Spodoptera frugiperda Sf9 cells reveals putative apoptosis-related genes and a preliminary apoptosis mechanism induced by azadirachtin.
Sci. Rep. 7:13231-13231(2017)

PubMed=29133148; DOI=10.1016/j.pep.2017.11.002
Geisler C., Jarvis D.L.
Adventitious viruses in insect cell lines used for recombinant protein expression.
Protein Expr. Purif. 144:25-32(2017)
https://en.wikipedia.org/wiki/Sf9_(cells)
SOgECVCL_Y592CVCL_3450 (QM7)/prepelica japonskáCoturnix coturnix japonicazvieraciaetická/Bunková línia využívaná pri produkcii vakcínChEBI; CHEBI:34342; 3-methylcholanthrene (3-MC; 20-methylcholanthrene; 20-MC; MCA)/Rakovinové bunkové líniesvalovéneurčenédospelé1-3 týždneGroup: Bird cell line. PubMed=12124462; DOI=10.1099/0022-1317-83-8-1987
Schumacher D., Tischer B.K., Teifke J.-P., Wink K., Osterrieder N.
Generation of a permanent cell line that supports efficient growth of Marek's disease virus (MDV) by constitutive expression of MDV glycoprotein E.
J. Gen. Virol. 83:1987-1992(2002)

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)
/
ST-2014SCVCL_XI68CVCL_2204 (ST [Pig testis])/diviak lesnýSus scrofa zvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové líniesemenníkovémužskéembryonálne80-90 fetálnych dníRegistration: International Depositary Authority, China Center for Type Culture Collection; CCTCC C201567.
Characteristics: Adapted to growth in suspension mode.
Patent=CN105112352B
Li S.-Y., Xu S.-L., Wu H.-W., Xu G.-K.
ST cell adapting to full-suspension culture, and application thereof, and vaccine virus culturing method.
Patent number CN105112352B, 24-Jul-2018
http://www.cellresource.cn/fdetail.aspx?id=2585
STSCVCL_YB15CVCL_2204 (ST [Pig testis])/diviak lesnýSus scrofa zvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové líniesemenníkovémužskéembryonálne80-90 fetálnych dníGroup: Serum/protein free medium cell line.
Registration: International Depositary Authority, Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ); ACC-3308.
Patent=US20190300863
Jordan I., Sandig V., Horn D., John K.
Novel porcine cell line for virus production.
Patent number US20190300863, 03-Oct-2019
/
sVero p66CVCL_JX48CVCL_0574 (Vero C1008)/mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetickásVero; Vero E6 AGSBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.
Group: Serum/protein free medium cell line.
Registration: International Depositary Authority, Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ); ACC-2791.
Characteristics: Adapted to suspension growth in serum-free media.
Doubling time: 24 hours (Patent=US20090203112).
Derived from sampling site: Kidney; epithelium.
Patent=US20090203112
Daelli M.G., Forno G., Paillet P., Etcheverrigaray M., Kratje R.
Vero cell line which is adapted to grow in suspension.
Patent number US20090203112, 13-Aug-2009

PubMed=19559123; DOI=10.1016/j.vaccine.2009.06.020
Paillet C., Forno G., Kratje R., Etcheverrigaray M.
Suspension-Vero cell cultures as a platform for viral vaccine production.
Vaccine 27:6464-6467(2009)
/
T17-17703ACVCL_JF17CVCL_JF18 (DuckCelt-T17)/kačica pižmováCairina moschata zvieraciaetická/Bunková línia využívaná pri produkcii vakcínNCBI_TaxID; 28285; Adenovirus 5 [E1A]UniProtKB; B7S5K9; Cairina moschata TERTTelomerázou imortalizované bunkové línie/neurčené//Group: Bird cell line.
Group: Serum/protein free medium cell line.
Group: Vaccine production cell line.
From: Transgene SA; France.
Registration: International Depositary Authority, European Collection of Cell Cultures (ECACC); 09070703.
Doubling time: 47 hours (Patent=US8513018).
Patent=US8513018
Erbs P., Kapfer M., Silvestre N.
Immortalized avian cell lines.
Patent number US8513018, 20-Aug-2013
/
T17-17703BCVCL_JF15CVCL_JF18 (DuckCelt-T17)/kačica pižmováCairina moschata zvieraciaetická/Bunková línia využívaná pri produkcii vakcínNCBI_TaxID; 28285; Adenovirus 5 [E1A]UniProtKB; B7S5K9; Cairina moschata TERTTelomerázou imortalizované bunkové línie/neurčené//Group: Bird cell line.
Group: Serum/protein free medium cell line.
From: Transgene SA; France.
Registration: International Depositary Authority, European Collection of Cell Cultures (ECACC); 09070701.
Doubling time: 35 hours (Patent=US8513018).
Patent=US8513018
Erbs P., Kapfer M., Silvestre N.
Immortalized avian cell lines.
Patent number US8513018, 20-Aug-2013
/
T17-17703B2CVCL_JF16CVCL_JF18 (DuckCelt-T17)/kačica pižmováCairina moschata zvieraciaetická/Bunková línia využívaná pri produkcii vakcínNCBI_TaxID; 28285; Adenovirus 5 [E1A]UniProtKB; B7S5K9; Cairina moschata TERTTelomerázou imortalizované bunkové línie/neurčené//Group: Bird cell line.
Group: Serum/protein free medium cell line.
Group: Vaccine production cell line.
From: Transgene SA; France.
Registration: International Depositary Authority, European Collection of Cell Cultures (ECACC); 09070702.
Doubling time: 30 hours (Patent=US8513018).
Patent=US8513018
Erbs P., Kapfer M., Silvestre N.
Immortalized avian cell lines.
Patent number US8513018, 20-Aug-2013
/
Teth-CRFKCVCL_WL54CVCL_2426 (CRFK)/mačka domácaFelis silvestris catuszvieraciaetická/Bunková línia využívaná pri produkcii vakcín/HGNC; 1119; BST2Spontánne imortalizované bunkové línieobličkovéženskédospelé3 mesiaceCharacteristics: Has a reduced risk of RD-114 contamination by suppressing the release of infectious RD-114 from cells by the antiviral action of BST2/tetherin.
Characteristics: Persistently infected by feline endogenous virus RD-114.
PubMed=23585909; DOI=10.1371/journal.pone.0061530
Fukuma A., Yoshikawa R., Miyazawa T., Yasuda J.
A new approach to establish a cell line with reduced risk of endogenous retroviruses.
PLoS ONE 8:E61530-E61530(2013)
/
VeroCVCL_0059ÁnoCVCL_HA73 (BER-40) CVCL_4518 (ECTC) CVCL_WJ16 (SVP)
CVCL_RW60 (VD60) CVCL_L035 (Vero 303) CVCL_0603 (Vero 76)
CVCL_L036 (Vero F6) CVCL_EJ70 (Vero M) CVCL_RX68 (Vero Mx-Luc)
CVCL_RX03 (Vero Mx13) CVCL_JF53 (Vero RCB 10-87) CVCL_1912 (Vero-B4)
CVCL_ZX02 (Vero-CD4/CCR5) CVCL_4334 (Vero-Hektor) CVCL_ZW93 (Vero-pA104R)
CVCL_1K11 (Vero-SF-ACF) CVCL_AS92 (Vero-SF-adapted) CVCL_GA12 (Vero-SV2neo clone VN5)
CVCL_YZ45 (Vero.STAT1 KO) CVCL_L037 (Vero/hSLAM) CVCL_WC99 (VERO/IgR)
CVCL_GA11 (Vero/PPRV H) CVCL_1K13 (Vero/SF) CVCL_YQ48 (Vero/TMPRSS2)
CVCL_ZW77 (VeroS) CVCL_WL55 (VK219) CVCL_3807 (W162)
mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetickáVERO; VeroCCL81; Vero 81; Verda renoBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.
Group: Vaccine production cell line.
Part of: Naval Biosciences Laboratory (NBL) collection (transferred to ATCC in 1982).
Biotechnology: Used for the production of the Japanese encephalitis virus (JEV) vaccine (Trade name: IXIARO/JESPECT).
Biotechnology: Used for the production of the inactivated poliovirus vaccine (Trade name: Imovax Polio).
Biotechnology: Used for the production of the Purified Vero-cell Rabies Vaccine (PVRV) (Trade name: VERORAB).
Biotechnology: Used for the production of the Chromatographically Purified Rabies Vaccine (CPRV).
Biotechnology: Used for the production of the live oral rotavirus vaccine (Trade Name: Rotarix).
Biotechnology: Used for the production of the tetravalent dengue vaccine (Trade Name: Dengvaxia).
Characteristics: Susceptible to SARS coronavirus (SARS-CoV) infection (PubMed=16494729).
Characteristics: Susceptible to SARS coronavirus 2 (SARS-CoV-2) infection (COVID-19). But Vero C1008 (often known as Vero E6) (CVCL_0574) seems to be more appropriate for amplification and quantification (PubMed=32511316).
Omics: Genome sequenced.
Anecdotal: Verda reno means green kidney in Esperanto and Vero means truth also in Esperanto.
CLPUB00126
Yasumura Y., Kawakita Y.
Studies on SV40 in tissue culture: preliminary step for cancer research in vitro.
Nihon Rinsho 21:1201-1219(1963)

PubMed=6027511; DOI=10.3181/00379727-125-32029
Simizu B., Rhim J.S., Wiebenga N.H.
Characterization of the Tacaribe group of arboviruses. I. Propagation and plaque assay of Tacaribe virus in a line of African green monkey kidney cells (Vero).
Proc. Soc. Exp. Biol. Med. 125:119-123(1967)

PubMed=6298990; DOI=10.1016/0378-1135(82)90056-6
McPhee D.A., Parsonson I.M., Della-Porta A.J.
Comparative studies on the growth of Australian bluetongue virus serotypes in continuous cell lines and embryonated chicken eggs.
Vet. Microbiol. 7:401-410(1982)

PubMed=4043530
Whitaker A.M., Hayward C.J.
The characterization of three monkey kidney cell lines.
Dev. Biol. Stand. 60:125-131(1985)

CLPUB00328
Earley E., Johnson K.
The lineage of Vero, Vero 76 and its clone C1008 in the United States.
(In) Vero cells: origin, properties and biomedical applications; Simizu B., Terasima T. (eds.); pp.26-29; Department of Microbiology School of Medicine Chiba University; Chiba (1988)

PubMed=10403033; DOI=10.1006/biol.1998.0156
Lang J., Cetre J.C., Picot N., Lanta M., Briantais P., Vital S., Le Mener V., Lutsch C., Rotivel Y.
Immunogenicity and safety in adults of a new chromatographically purified Vero-cell rabies vaccine (CPRV): a randomized, double-blind trial with purified Vero-cell rabies vaccine (PVRV).
Biologicals 26:299-308(1998)

PubMed=10494966
Montagnon B.J., Vincent-Falquet J.-C., Saluzzo J.-F.
Experience with Vero cells at Pasteur Merieux Connaught.
Dev. Biol. Stand. 98:137-140(1999)

PubMed=12667817; DOI=10.1016/S0042-6822(02)00064-8
Romanova J., Katinger D., Ferko B., Voglauer R., Mochalova L., Bovin N., Lim W., Katinger H., Egorov A.
Distinct host range of influenza H3N2 virus isolates in Vero and MDCK cells is determined by cell specific glycosylation pattern.
Virology 307:90-97(2003)

PubMed=16494729; DOI=10.3201/eid1201.050496
Kaye M., Druce J., Tran T., Kostecki R., Chibo D., Morris J., Catton M., Birch C.
SARS-associated coronavirus replication in cell lines.
Emerg. Infect. Dis. 12:128-133(2006)

DOI=10.12665/J63.Morgan
Morgan J.H.
Vero cells in vaccine production.
BioProcess. J. 6:12-17(2007)

PubMed=19016439; DOI=10.1002/9780471729259.mca04es11
Ammerman N.C., Beier-Sexton M., Azad A.F.
Growth and maintenance of Vero cell lines.
Curr. Protoc. Microbiol. 11:A.4E.1-A.4E.7(2008)

PubMed=19768803; DOI=10.1002/btpr.279
Rourou S., van der Ark A., van der Velden T., Kallel H.
Development of an animal-component free medium for Vero cells culture.
Biotechnol. Prog. 25:1752-1761(2009)

PubMed=19941903; DOI=10.1016/j.jviromet.2009.11.022
Karger A., Bettin B., Lenk M., Mettenleiter T.C.
Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing.
J. Virol. Methods 164:116-121(2010)

PubMed=22059503; DOI=10.1186/1472-6750-11-102
Almeida J.L., Hill C.R., Cole K.D.
Authentication of African green monkey cell lines using human short tandem repeat markers.
BMC Biotechnol. 11:102-102(2011)

PubMed=24975811; DOI=10.1016/j.vaccine.2014.06.045
Donis R.O., Chen I.-M., Davis C.T., Foust A., Hossain M.J., Johnson A., Klimov A., Loughlin R., Xu X., Tsai T., Blayer S., Trusheim H., Colegate T., Fox J., Taylor B., Hussain A., Barr I., Baas C., Louwerens J., Geuns E., Lee M.-S., Venhuizen O., Neumeier E., Ziegler T.
Performance characteristics of qualified cell lines for isolation and propagation of influenza viruses for vaccine manufacturing.
Vaccine 32:6583-6590(2014)

PubMed=25267831; DOI=10.1093/dnares/dsu029
Osada N., Kohara A., Yamaji T., Hirayama N., Kasai F., Sekizuka T., Kuroda M., Hanada K.
The genome landscape of the African green monkey kidney-derived Vero cell line.
DNA Res. 21:673-683(2014)

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)

PubMed=32511316; DOI=10.1101/2020.03.02.972935
Harcourt J., Tamin A., Lu X., Kamili S., Sakthivel S.K., Murray J., Queen K., Tao Y., Paden C.R., Zhang J., Li Y., Uehara A., Wang H., Goldsmith C., Bullock H.A., Wang L., Whitaker B., Lynch B., Gautam R., Schindewolf C., Lokugamage K.G., Scharton D., Plante J.A., Mirchandani D., Widen S.G., Narayanan K., Makino S., Ksiazek T.G., Plante K.S., Weaver S.C., Lindstrom S., Tong S., Menachery V.D., Thornburg N.J.
Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient.
bioRxiv 2020:972935-972935(2020)
https://en.wikipedia.org/wiki/Vero_cell
Vero 303CVCL_L035CVCL_0059 (Vero)CVCL_3863 (Vero 317)mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.//
Vero 317CVCL_3863CVCL_L035 (Vero 303)CVCL_T368 (Verots S3)mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetickáVero-317; Vero317Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.//
Vero 76CVCL_0603CVCL_0059 (Vero)CVCL_0574 (Vero C1008)mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetickáVERO 76; Vero-76; VERO-76; VERO76; Vero76; Vero from pool #76Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line. CLPUB00328
Earley E., Johnson K.
The lineage of Vero, Vero 76 and its clone C1008 in the United States.
(In) Vero cells: origin, properties and biomedical applications; Simizu B., Terasima T. (eds.); pp.26-29; Department of Microbiology School of Medicine Chiba University; Chiba (1988)

PubMed=19016439; DOI=10.1002/9780471729259.mca04es11
Ammerman N.C., Beier-Sexton M., Azad A.F.
Growth and maintenance of Vero cell lines.
Curr. Protoc. Microbiol. 11:A.4E.1-A.4E.7(2008)

PubMed=19941903; DOI=10.1016/j.jviromet.2009.11.022
Karger A., Bettin B., Lenk M., Mettenleiter T.C.
Rapid characterisation of cell cultures by matrix-assisted laser desorption/ionisation mass spectrometric typing.
J. Virol. Methods 164:116-121(2010)

PubMed=22059503; DOI=10.1186/1472-6750-11-102
Almeida J.L., Hill C.R., Cole K.D.
Authentication of African green monkey cell lines using human short tandem repeat markers.
BMC Biotechnol. 11:102-102(2011)

PubMed=24973239; DOI=10.1099/vir.0.065995-0
Richter M., Reimann I., Schirrmeier H., Kirkland P.D., Beer M.
The viral envelope is not sufficient to transfer the unique broad cell tropism of Bungowannah virus to a related pestivirus.
J. Gen. Virol. 95:2216-2222(2014)
http://www.rccc.cytspb.rssi.ru/ecellbank/animal/avero_76.htm
Vero C1008CVCL_0574CVCL_0603 (Vero 76)CVCL_JX48 (sVero p66) CVCL_XD71 (Vero E6-S) CVCL_YZ66 (Vero E6/NPC1-KO cl.19)CVCL_YQ49 (VeroE6/TMPRSS2)mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetickáVERO C1008; VeroC1008; VEROC1008; VERO C 1008; Vero 76 clone E6; Vero 76 clone E-6; Vero E-6; Vero E6; VERO E6; Vero-E6; VeroE6Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.
Characteristics: Susceptible to infection by many viruses. Supports the growth of slowly replicating viruses (ATCC).
Characteristics: Susceptible to SARS coronavirus (SARS-CoV) infection (PubMed=16494729).
Characteristics: Susceptible to SARS coronavirus 2 (SARS-CoV-2) infection (COVID-19) (PubMed=32020029; PubMed=32511316).
Doubling time: 22 hours (ATCC).


CLPUB00328
Earley E., Johnson K.
The lineage of Vero, Vero 76 and its clone C1008 in the United States.
(In) Vero cells: origin, properties and biomedical applications; Simizu B., Terasima T. (eds.); pp.26-29; Department of Microbiology School of Medicine Chiba University; Chiba (1988)

PubMed=16494729; DOI=10.3201/eid1201.050496
Kaye M., Druce J., Tran T., Kostecki R., Chibo D., Morris J., Catton M., Birch C.
SARS-associated coronavirus replication in cell lines.
Emerg. Infect. Dis. 12:128-133(2006)

PubMed=19016439; DOI=10.1002/9780471729259.mca04es11
Ammerman N.C., Beier-Sexton M., Azad A.F.
Growth and maintenance of Vero cell lines.
Curr. Protoc. Microbiol. 11:A.4E.1-A.4E.7(2008)

PubMed=32020029; DOI=10.1038/s41422-020-0282-0
Wang M.-L., Cao R.-Y., Zhang L.-K., Yang X.-L., Liu J., Xu M.-Y., Shi Z.-L., Hu Z.-H., Zhong W., Xiao G.-F.
Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.
Cell Res. 30:269-271(2020)

PubMed=32511316; DOI=10.1101/2020.03.02.972935
Harcourt J., Tamin A., Lu X., Kamili S., Sakthivel S.K., Murray J., Queen K., Tao Y., Paden C.R., Zhang J., Li Y., Uehara A., Wang H., Goldsmith C., Bullock H.A., Wang L., Whitaker B., Lynch B., Gautam R., Schindewolf C., Lokugamage K.G., Scharton D., Plante J.A., Mirchandani D., Widen S.G., Narayanan K., Makino S., Ksiazek T.G., Plante K.S., Weaver S.C., Lindstrom S., Tong S., Menachery V.D., Thornburg N.J.
Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient.
bioRxiv 2020:972935-972935(2020)
http://en.vircell.com/products/vero-e6-cell-line/
Vero E6-SCVCL_XD71CVCL_0574 (Vero C1008)/mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.
Registration: International Depositary Authority, China Center for Type Culture Collection; CCTCC C2017101.
Characteristics: Adapted to suspension growth.
Patent=CN107267443A
Li S.-Y., Xu S.-L.
Vero E6 cell strain adapting to full-suspension culture and application thereof.
Patent number CN107267443A, 20-Oct-2017
http://www.cellresource.cn/fdetail.aspx?id=2954
Vero RCB 10-87CVCL_JF53CVCL_0059 (Vero)/mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetickáVero (WHO); Vero(WHO); Vero-WHO; WHO Vero 10-87; 10-87 VeroBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.
Characteristics: A World Health Organisation (WHO) working cell bank of 1000 ampoules deposited at ECACC, derived from an original American Type Culture Collection (ATCC) ampoule. Available free of charge to organisations producing vaccines following receipt of approval to supply from WHO.
PubMed=10494966
Montagnon B.J., Vincent-Falquet J.-C., Saluzzo J.-F.
Experience with Vero cells at Pasteur Merieux Connaught.
Dev. Biol. Stand. 98:137-140(1999)

DOI=10.12665/J63.Morgan
Morgan J.H.
Vero cells in vaccine production.
BioProcess. J. 6:12-17(2007)

PubMed=19016439; DOI=10.1002/9780471729259.mca04es11
Ammerman N.C., Beier-Sexton M., Azad A.F.
Growth and maintenance of Vero cell lines.
Curr. Protoc. Microbiol. 11:A.4E.1-A.4E.7(2008)
http://www.who.int/biologicals/areas/vaccines/WHO_reference_cell_banks/en/
Vero-B4CVCL_1912CVCL_0059 (Vero)/mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetickáVERO-B4; Vero B4; VeroB4Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.
Group: Vaccine production cell line.
Characteristics: Susceptible to infection by Middle East respiratory syndrome coronavirus (MERS-CoV) (PubMed=25531820).
Doubling time: ~25 hours (DSMZ).
PubMed=25531820; DOI=10.3201/eid2101.141342
Meyer B., Garcia-Bocanegra I., Wernery U., Wernery R., Sieberg A., Muller M.A., Drexler J.F., Drosten C., Eckerle I.
Serologic assessment of possibility for MERS-CoV infection in equids.
Emerg. Infect. Dis. 21:181-182(2015)
/
Vero-HektorCVCL_4334CVCL_0059 (Vero)/mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetickáVero HektorBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.
Group: Serum/protein free medium cell line.
//
Vero-pA104RCVCL_ZW93CVCL_0059 (Vero)/mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetická/Bunková línia využívaná pri produkcii vakcín/UniProtKB; P00552; Transposon Tn5 neo; UniProtKB; P68742; African swine fever virus (AFSV) isolate Ba71V pA104R.Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.PubMed=31323824; DOI=10.3390/vaccines7030068
Freitas F.B., Simoes M., Frouco G., Martins C., Ferreira F.
Towards the generation of an ASFV-pA104R DISC mutant and a complementary cell line -- a potential methodology for the production of a vaccine candidate.
Vaccines (Basel). 7:68.1-68.16(2019)
/
Vero-SF-ACFCVCL_1K11CVCL_0059 (Vero)/mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetickáVero-Serum Free-Animal Component FreeBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.
Group: Serum/protein free medium cell line.
Characteristics: Adapted to serum-free and animal component-free medium.
//
Vero-SF-adaptedCVCL_AS92CVCL_0059 (Vero)/mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetickáVERO-SFBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.
Group: Serum/protein free medium cell line.
//
Vero.STAT1 KOCVCL_YZ45CVCL_0059 (Vero)/mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.
Group: Vaccine production cell line.
Characteristics: Excellent cell model for virus propagation and viral vaccine production. It exhibits significant increased viral titer and enhanced virus production capability when compared to its parental cell line (ATCC).
Doubling time: ~28 hours (ATCC).
Knockout cell: Method=CRISPR/Cas9; UniProtKB; A0A0D9RIE1; STAT1.
//
Vero/SFCVCL_1K13CVCL_0059 (Vero)/mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetickáVERO/SFBunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.
Group: Serum/protein free medium cell line.
//
VeroSCVCL_ZW77CVCL_0059 (Vero)/mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetická/Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.
Characteristics: Adapted to suspension growth.
//
Verots S3CVCL_T368CVCL_3863 (Vero 317)CVCL_T369 (Verots S3(SF))mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetická/Bunková línia využívaná pri produkcii vakcínNCBI_TaxID; 1891767; Simian virus 40 (SV40) [tsA58]/Transformované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.
Group: Serum/protein free medium cell line.


PubMed=1368119; DOI=10.1007/BF00365927
Ohno T., Wang X., Kurashima J., Saijo-Kurita K., Hirono M.
A novel Vero cell line for use as a mammalian host-vector system in serum-free medium.
Cytotechnology 7:165-172(1991)
/
Verots S3(SF)CVCL_T369CVCL_T368 (Verots S3)/mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetická/Bunková línia využívaná pri produkcii vakcínNCBI_TaxID; 1891767; Simian virus 40 (SV40) [tsA58]/Transformované bunkové línieobličkovéženskédospelé/ Group: Non-human primate cell line.
Group: Serum/protein free medium cell line.
//
Walvax-2CVCL_5J50Áno/človekHomo sapiensľudskáneetickáWALVAX-2; WALVAX 2; Walvax 2; WALVAX2; Walvax2Bunková línia využívaná pri produkcii vakcín//Konečné bunkové línie/ženskéembryonálne3 fetálne mesiaceRegistration: International Depositary Authority, China Center for Type Culture Collection; CCTCC C201055.
Characteristics: Maintains excellent capabilities for growth and proliferation until PDL 50 (max PDL is 58).
Doubling time: 39-41 hours (at 28th passage), 40-42 hours (at 38th passage), 57-62 hours (at 48th passage) (PubMed=25803132).
Anecdotal: Is causing an outrage in some pro-lifer circles because it is a cell line originating from an aborted (for medical reasons) 3-month old female fetus.
Patent=CN102911910A
Huang Z., He L.-F., Zhang W., Ma B., Wang L.-L., Zhao Q.-Y., Zhang Y., Wu W.-J., Chen M., Wang X., Tang Y.-F.
Human embryo lung fibroblast strain and method for using human embryo lung fibroblast strain for producing hand-foot-mouth viral vaccine.
Patent number CN102911910A, 06-Feb-2013

Patent=CN103525770B
Ma B., Yang Z., He L.-F., Wang L.-L., Chen M., Wang X.
Application of human fetal lung fibroblast line in preparation of hepatitis A vaccines.
Patent number CN103525770B, 19-Aug-2015

PubMed=25803132; DOI=10.1080/21645515.2015.1009811
Ma B., He L.-F., Zhang Y.-L., Chen M., Wang L.-L., Yang H.-W., Yan T., Sun M.-X., Zheng C.-Y.
Characteristics and viral propagation properties of a new human diploid cell line, Walvax-2, and its suitability as a candidate cell substrate for vaccine production.
Hum. Vaccin. Immunother. 11:998-1009(2015)

PubMed=26116706; DOI=10.1096/fj.14-266718
Ye F., Chen C.-G., Qin J., Liu J., Zheng C.-Y.
Genetic profiling reveals an alarming rate of cross-contamination among human cell lines used in China.
FASEB J. 29:4268-4272(2015)
http://www.cellresource.cn/fdetail.aspx?id=1875
WI-38CVCL_0579ÁnoCVCL_1R80 (GM08854) CVCL_1R88 (GM10322) CVCL_1R89 (GM10323)
CVCL_3142 (PSV811) CVCL_7871 (UTHs) CVCL_YU09 (WI-38 (HSV-2)Tr)
CVCL_L281 (WI-38 CT-1) CVCL_5605 (WI-38 Tr) CVCL_2759 (WI-38 VA13 subline 2RA)
CVCL_2812 (WI-38-30) CVCL_2813 (WI-38-40) CVCL_N806 (WI-38/hTERT/GFP-RAF-ER)
človekHomo sapiensľudskáneetickáWi-38; WI 38; WI38; Wistar Institute-38; AG06814-J; AG06814-M; AG06814-NBunková línia využívaná pri produkcii vakcín//Konečné bunkové líniepľúcneženskéembryonálne16 fetálny týždeňGroup: Space-flown cell line (cellonaut).
Group: Vaccine production cell line.
Part of: Naval Biosciences Laboratory (NBL) collection (transferred to ATCC in 1982).
Biotechnology: Used for the production of RA27/3 - the first rubella virus vaccine.
Biotechnology: Used for the production of live oral adenovirus type 4 and type 7 vaccine used by the US military. Produced first by Wyeth Laboratories from 1971 to 1999 and from 2011 onward by Barr Pharmaceuticals.
Biotechnology: Was used in the early 1970's for the production of the Human Diploid Cell Vaccine (HDCV) vaccine against rabies by Institut Merieux.
Characteristics: Used in many context such as senescence and aging studies.
Characteristics: Life expectancy of 50 +- 10 population doublings.
Characteristics: Senesces at 38 PDL (PubMed=17395773).
Doubling time: ~24 hours (ATCC; ECACC).
Omics: miRNA expression profiling.
Omics: SNP array analysis.
Omics: Transcriptome analysis.
Anecdotal: Hayflick when numbering diploid cell strains 'jumped' directly from WI-27 (which failed) to WI-38 (CelloPub=CLPUB00391).
Anecdotal: Have been flown in space on Skylab-3 to study growth in microgravity (PubMed=352912).
PubMed=14064953; DOI=10.1164/arrd.1963.88.3P2.387
Hayflick L.
A comparison of primary monkey kidney, heteroploid cell lines, and human diploid cell strains for human virus vaccine preparation.
Am. Rev. Respir. Dis. 88 Suppl. 3:387-393(1963)

PubMed=14218592
Wiktor T.J., Fernandes M.V., Koprowski H.
Cultivation of rabies virus in human diploid cell strain WI-38.
J. Immunol. 93:353-366(1964)

PubMed=5834207; DOI=10.1001/archpedi.1965.02090030401007
Plotkin S.A., Cornfeld D., Ingalls T.H.
Studies of immunization with living rubella virus. Trials in children with a strain cultured from an aborted fetus.
Am. J. Dis. Child. 110:381-389(1965)

PubMed=14315085; DOI=10.1016/0014-4827(65)90211-9
Hayflick L.
The limited in vitro lifetime of human diploid cell strains.
Exp. Cell Res. 37:614-636(1965)

PubMed=5956336; DOI=10.1038/210100a0
Jacobs J.P.
A simple medium for the propagation and maintenance of human diploid cell strains.
Nature 210:100-101(1966)

PubMed=5668122; DOI=10.3181/00379727-128-33119
Peterson W.D. Jr., Stulberg C.S., Swanborg N.K., Robinson A.R.
Glucose-6-phosphate dehydrogenase isoenzymes in human cell cultures determined by sucrose-agar gel and cellulose acetate zymograms.
Proc. Soc. Exp. Biol. Med. 128:772-776(1968)

PubMed=5347639; DOI=10.1016/0014-4827(69)90166-9
Stanbridge E., Onen M., Perkins F.T., Hayflick L.
Karyological and morphological characteristics of human diploid cell strain WI-38 infected with mycoplasmas.
Exp. Cell Res. 57:397-410(1969)

PubMed=4329447; DOI=10.1084/jem.133.3.454
Giraldo G., Beth E., Hirshaut Y., Aoki T., Old L.J., Boyse E.A., Chopra H.C.
Human sarcomas in culture. Foci of altered cells and a common antigen; induction of foci and antigen in human fibroblast cultures by filtrates.
J. Exp. Med. 133:454-478(1971)

PubMed=4203458
Petricciani J.C., Wallace R.E., McCoy D.W.
A comparison of three in vivo assays for cell tumorigenicity.
Cancer Res. 34:105-108(1974)

PubMed=4817727; DOI=10.1016/0014-4827(74)90416-9
Dell'Orco R.T., Mertens J.G., Kruse P.F. Jr.
Doubling potential, calendar time, and donor age of human diploid cells in culture.
Exp. Cell Res. 84:363-366(1974)

PubMed=1031681
Jacobs J.P.
Updated results on the karyology of the WI-38, MRC-5 and MRC-9 cell strains.
Dev. Biol. Stand. 37:155-156(1976)

PubMed=17792436; DOI=10.1126/science.192.4235.125
Wade N.
Hayflick's tragedy: the rise and fall of a human cell line.
Science 192:125-127(1976)

PubMed=211143
Friedman H.M., Koropchak C.
Comparison of WI-38, MRC-5, and IMR-90 cell strains for isolation of viruses from clinical specimens.
J. Clin. Microbiol. 7:368-371(1978)

PubMed=352912; DOI=10.1007/BF02618218
Montgomery P.O. Jr., Cook J.E., Reynolds R.C., Paul J.S., Hayflick L., Stock D., Schulz W.W., Kimsey S., Thirolf R.G., Rogers T., Campbell D.
The response of single human cells to zero gravity.
In Vitro 14:165-173(1978)

PubMed=656543; DOI=10.1016/S0006-3495(78)85487-3
Ehmann U.K., Cook K.H., Friedberg E.C.
The kinetics of thymine dimer excision in ultraviolet-irradiated human cells.
Biophys. J. 22:249-264(1978)

PubMed=699332; DOI=10.1016/0009-8981(78)90444-8
Knaup G., Pfleiderer G., Bayreuther K.
Human diploid lung fibroblast cell lines WI 26 and WI 38 exhibit isozyme shift of alkaline phosphatase after viral transformation.
Clin. Chim. Acta 88:375-383(1978)

PubMed=535915; DOI=10.1007/BF02618249
Houghton B.A., Stidworthy G.H.
A growth history comparison of the human diploid cells WI-38 and IMR-90: proliferative capacity and cell sizing analysis.
In Vitro 15:697-702(1979)

PubMed=6256643; DOI=10.1038/288724a0
Day R.S. III, Ziolkowski C.H.J., Scudiero D.A., Meyer S.A., Lubiniecki A.S., Girardi A.J., Galloway S.M., Bynum G.D.
Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains.
Nature 288:724-727(1980)

PubMed=7065527; DOI=10.1164/arrd.1982.125.2.222
Hay R.J., Williams C.D., Macy M.L., Lavappa K.S.
Cultured cell lines for research on pulmonary physiology available through the American Type Culture Collection.
Am. Rev. Respir. Dis. 125:222-232(1982)

PubMed=6409440; DOI=10.1093/carcin/4.7.911
Smith P.J., Greene M.H., Adams D., Paterson M.C.
Abnormal responses to the carcinogen 4-nitroquinoline 1-oxide of cultured fibroblasts from patients with dysplastic nevus syndrome and hereditary cutaneous malignant melanoma.
Carcinogenesis 4:911-916(1983)

DOI=10.1016/B978-0-12-007903-2.50014-3
Hayflick L.
The coming of age of WI-38.
Adv. Cell Cult. 3:303-316(1984)

PubMed=6538202; DOI=10.1083/jcb.98.3.1133
Azzarone B., Suarez H., Mingari M.-C., Moretta L., Fauci A.S.
4F2 monoclonal antibody recognizes a surface antigen on spread human fibroblasts of embryonic but not of adult origin.
J. Cell Biol. 98:1133-1137(1984)

PubMed=7972006; DOI=10.1073/pnas.91.23.11045
Okamoto A., Demetrick D.J., Spillare E.A., Hagiwara K., Hussain S.P., Bennett W.P., Forrester K., Gerwin B., Serrano M., Beach D.H., Harris C.C.
Mutations and altered expression of p16INK4 in human cancer.
Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994)

DOI=10.11418/jtca1981.16.3_147
Hayflick L.
The use of human cells for production of human biologicals.
Tissue Cult. Res. Commun. 16:147-156(1997)

PubMed=17395773; DOI=10.1634/stemcells.2006-0504
Sudo K., Kanno M., Miharada K., Ogawa S., Hiroyama T., Saijo K., Nakamura Y.
Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations.
Stem Cells 25:1610-1617(2007)

PubMed=19896956; DOI=10.1016/j.mrfmmm.2009.10.013
Wilson P.F., Nham P.B., Urbin S.S., Hinz J.M., Jones I.M., Thompson L.H.
Inter-individual variation in DNA double-strand break repair in human fibroblasts before and after exposure to low doses of ionizing radiation.
Mutat. Res. 683:91-97(2010)

PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458
Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Cancer Res. 70:2158-2164(2010)

PubMed=22984048; DOI=10.1126/science.337.6100.1292-a
Hayflick L.
Paying for tissue: the case of WI-38.
Science 337:1292-1292(2012)

DOI=10.1038/498407a
Nature editorial staff
A culture of consent.
Nature 498:407-407(2013)

DOI=10.1038/498422a
Wadman M.
Medical research: cell division.
Nature 498:422-426(2013)

PubMed=25063771; DOI=10.18632/aging.100679
Sidler C., Woycicki R., Kovalchuk I., Kovalchuk O.
WI-38 senescence is associated with global and site-specific hypomethylation.
Aging (Albany NY) 6:564-574(2014)

PubMed=25903999; DOI=10.1002/biot.201400388
Genzel Y.
Designing cell lines for viral vaccine production: where do we stand?
Biotechnol. J. 10:728-740(2015)

CLPUB00391
Wadman M.
The vaccine race: science, politics, and the human costs of defeating disease.
(In) ISBN 9780525427537; pp.1-436; Viking; New York (2016)
https://en.wikipedia.org/wiki/WI-38
VeroE6/TMPRSS2CVCL_YQ49CVCL_0574 (Vero C1008)/mačiak obecný (bielozelený)Cercopithecus / Chlorocebus aethiopszvieraciaetická/Bunková línia využívaná pri produkcii vakcín/HGNC; 11876; TMPRSS2;
UniProtKB; P00552; Transposon Tn5 neo
Spontánne imortalizované bunkové línieobličkovéženskédospelé/Group: Non-human primate cell line.
Characteristics: Highly susceptible to Middle East respiratory syndrome coronavirus (MERS-CoV), SARS coronavirus (SARS-CoV) and SARS coronavirus 2 (SARS-CoV-2) infection (PubMed=32165541).
PubMed=31013314; DOI=10.1371/journal.pone.0215822
Nao N., Sato K., Yamagishi J., Tahara M., Nakatsu Y., Seki F., Katoh H., Ohnuma A., Shirogane Y., Hayashi M., Suzuki T., Kikuta H., Nishimura H., Takeda M.
Consensus and variations in cell line specificity among human metapneumovirus strains.
PLoS ONE 14:E0215822-E0215822(2019)

PubMed=32165541; DOI=10.1073/pnas.2002589117
Matsuyama S., Nao N., Shirato K., Kawase M., Saito S., Takayama I., Nagata N., Sekizuka T., Katoh H., Kato F., Sakata M., Tahara M., Kutsuna S., Ohmagari N., Kuroda M., Suzuki T., Kageyama T., Takeda M.
Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells.
Proc. Natl. Acad. Sci. U.S.A. 117:7001-7003(2020)
/
Caco-2CVCL_0025ÁnoCVCL_1096 (C2BBe1) CVCL_Z582 (C2BBe2) CVCL_YP11 (Caco-2 Cu Pro-R)
CVCL_YP12 (Caco-2 CuSO4-R) CVCL_HA82 (Caco-2-RCAr clone 2) CVCL_0232 (Caco-2/15)
CVCL_Z578 (Caco-2/3) CVCL_Z579 (Caco-2/PD-10) CVCL_Z580 (Caco-2/PD-7)
CVCL_Z581 (Caco-2/PF-11) CVCL_0233 (Caco-2/TC-7)
človekHomo sapiensľudskáetickáCaCo-2; CACO-2; Caco 2; CACO 2; CACO2; CaCo2; CaCO2; Caco2; Caco-2/ATCC; Caco-IIBunková línia využívaná pri produkcii vakcín//Rakovinové bunkové líniečrevný karcinómmužskédospelé72 rokovPart of: AstraZeneca Colorectal cell line (AZCL) panel.
Part of: Cancer Cell Line Encyclopedia (CCLE) project.
Part of: ENCODE project common cell types; tier 3.
Part of: MD Anderson Cell Lines Project.
Characteristics: Highly permissive to SARS coronavirus (SARS-Cov) infection (PubMed=15316659).
Doubling time: ~80 hours (DSMZ); ~32 hours (PBCF); ~60-70 hours (CLS).
Microsatellite instability: Stable (MSS) (PubMed=24042735; PubMed=25926053; PubMed=28683746).
Omics: Deep antibody staining analysis.
Omics: Deep exome analysis.
Omics: Deep phosphoproteome analysis.
Omics: Deep proteome analysis.
Omics: Deep RNAseq analysis.
Omics: H3K4me3 ChIP-seq epigenome analysis.
Omics: H3K27me3 ChIP-seq epigenome analysis.
Omics: H3K36me3 ChIP-seq epigenome analysis.
Omics: miRNA expression profiling.
Omics: N-glycan profiling.
Omics: Protein expression by reverse-phase protein arrays.
Omics: SNP array analysis.
Omics: Transcriptome analysis.
PubMed=327080; DOI=10.1093/jnci/59.1.221
Fogh J., Fogh J.M., Orfeo T.
One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.
J. Natl. Cancer Inst. 59:221-226(1977)

PubMed=833871; DOI=10.1093/jnci/58.2.209
Fogh J., Wright W.C., Loveless J.D.
Absence of HeLa cell contamination in 169 cell lines derived from human tumors.
J. Natl. Cancer Inst. 58:209-214(1977)

PubMed=6935474; DOI=10.1093/jnci/66.2.239
Wright W.C., Daniels W.P., Fogh J.
Distinction of seventy-one cultured human tumor cell lines by polymorphic enzyme analysis.
J. Natl. Cancer Inst. 66:239-247(1981)

PubMed=7459858
Rousset M., Zweibaum A., Fogh J.
Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.
Cancer Res. 41:1165-1170(1981)

PubMed=3518877; DOI=10.3109/07357908609038260
Fogh J.
Human tumor lines for cancer research.
Cancer Invest. 4:157-184(1986)

PubMed=3349466
Chantret I., Barbat A., Dussaulx E., Brattain M.G., Zweibaum A.
Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines.
Cancer Res. 48:1936-1942(1988)

PubMed=2914637; DOI=10.1016/0016-5085(89)90897-4
Hidalgo I.J., Raub T.J., Borchardt R.T.
Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability.
Gastroenterology 96:736-749(1989)

PubMed=9294210; DOI=10.1073/pnas.94.19.10330
Ilyas M., Tomlinson I.P.M., Rowan A., Pignatelli M., Bodmer W.F.
Beta-catenin mutations in cell lines established from human colorectal cancers.
Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997)

PubMed=10612807; DOI=10.1002/(SICI)1098-2264(200002)27:2<183::AID-GCC10>3.0.CO;2-P
Ghadimi B.M., Sackett D.L., Difilippantonio M.J., Schrock E., Neumann T., Jauho A., Auer G., Ried T.
Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.
Genes Chromosomes Cancer 27:183-190(2000)

PubMed=10737795; DOI=10.1073/pnas.97.7.3352
Rowan A.J., Lamlum H., Ilyas M., Wheeler J., Straub J., Papadopoulou A., Bicknell D.C., Bodmer W.F., Tomlinson I.P.M.
APC mutations in sporadic colorectal tumors: a mutational 'hotspot' and interdependence of the 'two hits'.
Proc. Natl. Acad. Sci. U.S.A. 97:3352-3357(2000)

PubMed=11414198; DOI=10.1007/s004320000207
Lahm H., Andre S., Hoeflich A., Fischer J.R., Sordat B., Kaltner H., Wolf E., Gabius H.J.
Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.
J. Cancer Res. Clin. Oncol. 127:375-386(2001)

PubMed=12584437; DOI=10.1159/000068544
Melcher R., Koehler S., Steinlein C., Schmid M., Mueller C.R., Luehrs H., Menzel T., Scheppach W., Moerk H., Scheurlen M., Koehrle J., Al-Taie O.
Spectral karyotype analysis of colon cancer cell lines of the tumor suppressor and mutator pathway.
Cytogenet. Genome Res. 98:22-28(2002)

PubMed=14599474; DOI=10.1016/S0887-2333(03)00095-X
Ranaldi G., Consalvo R., Sambuy Y., Scarino M.L.
Permeability characteristics of parental and clonal human intestinal Caco-2 cell lines differentiated in serum-supplemented and serum-free media.
Toxicol. In Vitro 17:761-767(2003)

PubMed=15316659; DOI=10.1007/s00018-004-4222-9
Cinatl J. Jr., Hoever G., Morgenstern B., Preiser W., Vogel J.-U., Hofmann W.-K., Bauer G., Michaelis M., Rabenau H.F., Doerr H.-W.
Infection of cultured intestinal epithelial cells with severe acute respiratory syndrome coronavirus.
Cell. Mol. Life Sci. 61:2100-2112(2004)

PubMed=15868485; DOI=10.1007/s10565-005-0085-6
Sambuy Y., De Angelis I., Ranaldi G., Scarino M.L., Stammati A., Zucco F.
The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics.
Cell Biol. Toxicol. 21:1-26(2005)

PubMed=16418264; DOI=10.1073/pnas.0510146103
Liu Y., Bodmer W.F.
Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines.
Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006)

PubMed=16854228; DOI=10.1186/1476-4598-5-29
Bandres E., Cubedo E., Agirre X., Malumbres R., Zarate R., Ramirez N., Abajo A., Navarro A., Moreno I., Monzo M., Garcia-Foncillas J.
Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.
Mol. Cancer 5:29-29(2006)

PubMed=18258742; DOI=10.1073/pnas.0712176105
Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.
Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.
Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008)

PubMed=20570890; DOI=10.1158/0008-5472.CAN-10-0192
Janakiraman M., Vakiani E., Zeng Z., Pratilas C.A., Taylor B.S., Chitale D., Halilovic E., Wilson M., Huberman K., Ricarte Filho J.C., Persaud Y., Levine D.A., Fagin J.A., Jhanwar S.C., Mariadason J.M., Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.
Genomic and biological characterization of exon 4 KRAS mutations in human cancer.
Cancer Res. 70:5901-5911(2010)

PubMed=20606684; DOI=10.1038/sj.bjc.6605780
Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.
5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.
Br. J. Cancer 103:340-346(2010)

PubMed=20831567; DOI=10.1111/j.1582-4934.2010.01170.x
Ma Y.-L., Zhang P., Wang F., Moyer M.P., Yang J.-J., Liu Z.-H., Peng J.-Y., Chen H.-Q., Zhou Y.-K., Liu W.-J., Qin H.-L.
Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b.
J. Cell. Mol. Med. 15:1941-1954(2011)

PubMed=21607810; DOI=10.1208/s12248-011-9283-8
Borchardt R.T.
Hidalgo, I.J., Raub, T.J., and Borchardt, R.T.: Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability, Gastroenterology, 96, 736-749, 1989 -- the backstory.
AAPS J. 13:323-327(2011)

PubMed=23272949; DOI=10.1186/1755-8794-5-66
Schlicker A., Beran G., Chresta C.M., McWalter G., Pritchard A., Weston S., Runswick S., Davenport S., Heathcote K., Castro D.A., Orphanides G., French T., Wessels L.F.A.
Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.
BMC Med. Genomics 5:66-66(2012)

PubMed=23932154; DOI=10.1016/j.radonc.2013.06.032
Salendo J., Spitzner M., Kramer F., Zhang X., Jo P., Wolff H.A., Kitz J., Kaulfuss S., Beissbarth T., Dobbelstein M., Ghadimi M., Grade M., Gaedcke J.
Identification of a microRNA expression signature for chemoradiosensitivity of colorectal cancer cells, involving miRNAs-320a, -224, -132 and let7g.
Radiother. Oncol. 108:451-457(2013)

PubMed=24042735; DOI=10.1038/oncsis.2013.35
Ahmed D., Eide P.W., Eilertsen I.A., Danielsen S.A., Eknaes M., Hektoen M., Lind G.E., Lothe R.A.
Epigenetic and genetic features of 24 colon cancer cell lines.
Oncogenesis 2:E71-E71(2013)

PubMed=24755471; DOI=10.1158/0008-5472.CAN-14-0013
Mouradov D., Sloggett C., Jorissen R.N., Love C.G., Li S., Burgess A.W., Arango D., Strausberg R.L., Buchanan D., Wormald S., O'Connor L., Wilding J.L., Bicknell D.C., Tomlinson I.P.M., Bodmer W.F., Mariadason J.M., Sieber O.M.
Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.
Cancer Res. 74:3238-3247(2014)

PubMed=25960936; DOI=10.4161/21624011.2014.954893
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
OncoImmunology 3:E954893-E954893(2014)

PubMed=25485619; DOI=10.1038/nbt.3080
Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z., Liu H., Degenhardt J., Mayba O., Gnad F., Liu J., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.
A comprehensive transcriptional portrait of human cancer cell lines.
Nat. Biotechnol. 33:306-312(2015)

PubMed=25841592; DOI=10.1016/j.jprot.2015.03.019
Piersma S.R., Knol J.C., de Reus I., Labots M., Sampadi B.K., Pham T.V., Ishihama Y., Verheul H.M.W., Jimenez C.R.
Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.
J. Proteomics 127:247-258(2015)

PubMed=25926053; DOI=10.1038/ncomms8002
Medico E., Russo M., Picco G., Cancelliere C., Valtorta E., Corti G., Buscarino M., Isella C., Lamba S., Martinoglio B., Veronese S., Siena S., Sartore-Bianchi A., Beccuti M., Mottolese M., Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.
The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.
Nat. Commun. 6:7002-7002(2015)

PubMed=26537799; DOI=10.1074/mcp.M115.051235
Holst S., Deuss A.J.M., van Pelt G.W., van Vliet S.J., Garcia-Vallejo J.J., Koeleman C.A.M., Deelder A.M., Mesker W.E., Tollenaar R.A., Rombouts Y., Wuhrer M.
N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.
Mol. Cell. Proteomics 15:124-140(2016)

PubMed=26869432; DOI=10.1016/j.xphs.2015.10.030
Olander M., Wisniewski J.R., Matsson P., Lundquist P., Artursson P.
The proteome of filter-grown Caco-2 cells with a focus on proteins involved in drug disposition.
J. Pharm. Sci. 105:817-827(2016)

PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005
Li J., Zhao W., Akbani R., Liu W., Ju Z., Ling S., Vellano C.P., Roebuck P., Yu Q., Eterovic A.K., Byers L.A., Davies M.A., Deng W., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y., Mills G.B., Liang H.
Characterization of human cancer cell lines by reverse-phase protein arrays.
Cancer Cell 31:225-239(2017)

PubMed=28683746; DOI=10.1186/s12943-017-0691-y
Berg K.C.G., Eide P.W., Eilertsen I.A., Johannessen B., Bruun J., Danielsen S.A., Bjornslett M., Meza-Zepeda L.A., Eknaes M., Lind G.E., Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.
Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies.
Mol. Cancer 16:116-116(2017)

PubMed=29101300; DOI=10.15252/msb.20177701
Frejno M., Zenezini Chiozzi R., Wilhelm M., Koch H., Zheng R., Klaeger S., Ruprecht B., Meng C., Kramer K., Jarzab A., Heinzlmeir S., Johnstone E., Domingo E., Kerr D., Jesinghaus M., Slotta-Huspenina J., Weichert W., Knapp S., Feller S.M., Kuster B.
Pharmacoproteomic characterisation of human colon and rectal cancer.
Mol. Syst. Biol. 13:951-951(2017)

PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747
Dutil J., Chen Z., Monteiro A.N., Teer J.K., Eschrich S.A.
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Cancer Res. 79:1263-1273(2019)

PubMed=31068700; DOI=10.1038/s41586-019-1186-3
Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. III, Barretina J., Gelfand E.T., Bielski C.M., Li H., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Nature 569:503-508(2019)

PubMed=31981602; DOI=10.1016/j.tiv.2020.104773
O'Doherty C., Keenan J., Henry M., Meleady P., Sinkunaite I., Clynes M., O'Sullivan F., Horgan K., Murphy R.
Characterisation and proteomic profiling of continuously exposed Cu-resistant variants of the Caco-2 cell line.
Toxicol. In Vitro 65:104773-104773(2020)
https://en.wikipedia.org/wiki/Caco-2
Calu-3CVCL_0609ÁnoCVCL_YZ47 (Calu-3 2B4) CVCL_EQ19 (Calu3-GemR)človekHomo sapiensľudskáetickáCaLu-3; CALU-3; Calu 3; Calu3; CALU3Bunková línia využívaná pri produkcii vakcín//Rakovinové bunkové líniepľúcny kacinómmužskédospelé25 rokovPart of: Cancer Cell Line Encyclopedia (CCLE) project.
Part of: COSMIC cell lines project.
Part of: KuDOS 95 cell line panel.
Part of: MD Anderson Cell Lines Project.
From: Memorial Sloan Kettering Cancer Center; New York; USA.
Registration: Memorial Sloan Kettering Cancer Center Office of Technology Development; SK1980-533.
Doubling time: 35 hours (in RPMI 1640 + 10% FBS), 45 hours (in ACL-3), 37 hours (in ACL-3+BSA) (PubMed=3940644); 40.1 hours (PubMed=29681454).
Microsatellite instability: Stable (MSS) (Sanger).
Omics: Cell surface proteome.
Omics: Deep exome analysis.
Omics: Deep RNAseq analysis.
Omics: DNA methylation analysis.
Omics: Protein expression by reverse-phase protein arrays.
Omics: SNP array analysis.
Omics: Transcriptome analysis.
Misspelling: CALV3; In Cosmic 1434969.
PubMed=327080; DOI=10.1093/jnci/59.1.221
Fogh J., Fogh J.M., Orfeo T.
One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.
J. Natl. Cancer Inst. 59:221-226(1977)

PubMed=7459858
Rousset M., Zweibaum A., Fogh J.
Presence of glycogen and growth-related variations in 58 cultured human tumor cell lines of various tissue origins.
Cancer Res. 41:1165-1170(1981)

PubMed=6220172
Dracopoli N.C., Fogh J.
Polymorphic enzyme analysis of cultured human tumor cell lines.
J. Natl. Cancer Inst. 70:469-476(1983)

PubMed=3518877; DOI=10.3109/07357908609038260
Fogh J.
Human tumor lines for cancer research.
Cancer Invest. 4:157-184(1986)

PubMed=3940644
Brower M., Carney D.N., Oie H.K., Gazdar A.F., Minna J.D.
Growth of cell lines and clinical specimens of human non-small cell lung cancer in a serum-free defined medium.
Cancer Res. 46:798-806(1986)

PubMed=3129183
Hubbard W.C., Alley M.C., McLemore T.L., Boyd M.R.
Evidence for thromboxane biosynthesis in established cell lines derived from human lung adenocarcinomas.
Cancer Res. 48:2674-2677(1988)

PubMed=3335022
Alley M.C., Scudiero D.A., Monks A., Hursey M.L., Czerwinski M.J., Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
Cancer Res. 48:589-601(1988)

PubMed=7515578; DOI=10.1152/ajplung.1994.266.5.L493
Shen B.Q., Finkbeiner W.E., Wine J.J., Mrsny R.J., Widdicombe J.H.
Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl-secretion.
Am. J. Physiol. 266:L493-L501(1994)

PubMed=9636188; DOI=10.1073/pnas.95.13.7556
Kaplan D.H., Shankaran V., Dighe A.S., Stockert E., Aguet M., Old L.J., Schreiber R.D.
Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice.
Proc. Natl. Acad. Sci. U.S.A. 95:7556-7561(1998)

PubMed=10523844; DOI=10.1038/sj.onc.1202957
Agochiya M., Brunton V.G., Owens D.W., Parkinson E.K., Paraskeva C., Keith W.N., Frame M.C.
Increased dosage and amplification of the focal adhesion kinase gene in human cancer cells.
Oncogene 18:5646-5653(1999)

PubMed=11064206; DOI=10.1016/S0378-5173(00)00452-X
Foster K.A., Avery M.L., Yazdanian M., Audus K.L.
Characterization of the Calu-3 cell line as a tool to screen pulmonary drug delivery.
Int. J. Pharm. 208:1-11(2000)

PubMed=15463957; DOI=10.1016/j.jcf.2004.05.040
Gruenert D.C., Willems M., Cassiman J.J., Frizzell R.A.
Established cell lines used in cystic fibrosis research.
J. Cyst. Fibros. 3:191-196(2004)

PubMed=17483357; DOI=10.1158/0008-5472.CAN-06-4495
Tooker P., Yen W.-C., Ng S.-C., Negro-Vilar A., Hermann T.W.
Bexarotene (LGD1069, Targretin), a selective retinoid X receptor agonist, prevents and reverses gemcitabine resistance in NSCLC cells by modulating gene amplification.
Cancer Res. 67:4425-4433(2007)

PubMed=18083107; DOI=10.1016/j.cell.2007.11.025
Rikova K., Guo A., Zeng Q., Possemato A., Yu J., Haack H., Nardone J., Lee K., Reeves C., Li Y., Hu Y., Tan Z., Stokes M., Sullivan L., Mitchell J., Wetzel R., Macneill J., Ren J.M., Yuan J., Bakalarski C.E., Villen J., Kornhauser J.M., Smith B., Li D., Zhou X., Gygi S.P., Gu T.-L., Polakiewicz R.D., Rush J., Comb M.J.
Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer.
Cell 131:1190-1203(2007)

PubMed=19472407; DOI=10.1002/humu.21028
Blanco R., Iwakawa R., Tang M., Kohno T., Angulo B., Pio R., Montuenga L.M., Minna J.D., Yokota J., Sanchez-Cespedes M.
A gene-alteration profile of human lung cancer cell lines.
Hum. Mutat. 30:1199-1206(2009)

PubMed=20090954; DOI=10.1371/journal.pone.0008729
Yoshikawa T., Hill T.E., Yoshikawa N., Popov V.L., Galindo C.L., Garner H.R., Peters C.J., Tseng C.-T.
Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection.
PLoS ONE 5:E8729-E8729(2010)

PubMed=20164919; DOI=10.1038/nature08768
Bignell G.R., Greenman C.D., Davies H., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F., Campbell P.J., Futreal P.A., Stratton M.R.
Signatures of mutation and selection in the cancer genome.
Nature 463:893-898(2010)

PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458
Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Cancer Res. 70:2158-2164(2010)

PubMed=22460905; DOI=10.1038/nature11003
Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.K., Yu J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Nature 483:603-607(2012)

PubMed=22961666; DOI=10.1158/2159-8290.CD-12-0112
Byers L.A., Wang J., Nilsson M.B., Fujimoto J., Saintigny P., Yordy J., Giri U., Peyton M., Fan Y.H., Diao L., Masrorpour F., Shen L., Liu W., Duchemann B., Tumula P., Bhardwaj V., Welsh J., Weber S., Glisson B.S., Kalhor N., Wistuba I.I., Girard L., Lippman S.M., Mills G.B., Coombes K.R., Weinstein J.N., Minna J.D., Heymach J.V.
Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1.
Cancer Discov. 2:798-811(2012)

PubMed=24207061; DOI=10.1186/1559-0275-10-16
Cerciello F., Choi M., Nicastri A., Bausch-Fluck D., Ziegler A., Vitek O., Felley-Bosco E., Stahel R.A., Aebersold R., Wollscheid B.
Identification of a seven glycopeptide signature for malignant pleural mesothelioma in human serum by selected reaction monitoring.
Clin. Proteomics 10:16-16(2013)

PubMed=25485619; DOI=10.1038/nbt.3080
Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z., Liu H., Degenhardt J., Mayba O., Gnad F., Liu J., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.
A comprehensive transcriptional portrait of human cancer cell lines.
Nat. Biotechnol. 33:306-312(2015)

PubMed=25555374; DOI=10.1016/j.ejps.2014.12.017
Kreft M.E., Jerman U.D., Lasic E., Hevir-Kene N., Rizner T.L., Peternel L., Kristan K.
The characterization of the human cell line Calu-3 under different culture conditions and its use as an optimized in vitro model to investigate bronchial epithelial function.
Eur. J. Pharm. Sci. 69:1-9(2015)

PubMed=25894527; DOI=10.1371/journal.pone.0121314
Bausch-Fluck D., Hofmann A., Bock T., Frei A.P., Cerciello F., Jacobs A., Moest H., Omasits U., Gundry R.L., Yoon C., Schiess R., Schmidt A., Mirkowska P., Hartlova A., Van Eyk J.E., Bourquin J.-P., Aebersold R., Boheler K.R., Zandstra P., Wollscheid B.
A mass spectrometric-derived cell surface protein atlas.
PLoS ONE 10:E0121314-E0121314(2015)

PubMed=27397505; DOI=10.1016/j.cell.2016.06.017
Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X., Egan R.K., Liu Q., Mironenko T., Mitropoulos X., Richardson L., Wang J., Zhang T., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
A landscape of pharmacogenomic interactions in cancer.
Cell 166:740-754(2016)

PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005
Li J., Zhao W., Akbani R., Liu W., Ju Z., Ling S., Vellano C.P., Roebuck P., Yu Q., Eterovic A.K., Byers L.A., Davies M.A., Deng W., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y., Mills G.B., Liang H.
Characterization of human cancer cell lines by reverse-phase protein arrays.
Cancer Cell 31:225-239(2017)

PubMed=29681454; DOI=10.1016/j.cell.2018.03.028
McMillan E.A., Ryu M.-J., Diep C.H., Mendiratta S., Clemenceau J.R., Vaden R.M., Kim J.-H., Motoyaji T., Covington K.R., Peyton M., Huffman K., Wu X.-F., Girard L., Sung Y., Chen P.-H., Mallipeddi P.L., Lee J.Y., Hanson J., Voruganti S., Yu Y., Park S., Sudderth J., DeSevo C., Muzny D.M., Doddapaneni H., Gazdar A., Gibbs R.A., Hwang T.-H., Heymach J.V., Wistuba I., Coombes K.R., Williams N.S., Wheeler D.A., MacMillan J.B., Deberardinis R.J., Roth M.G., Posner B.A., Minna J.D., Kim H.S., White M.A.
Chemistry-first approach for nomination of personalized treatment in lung cancer.
Cell 173:864-878.e29(2018)

PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747
Dutil J., Chen Z., Monteiro A.N., Teer J.K., Eschrich S.A.
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Cancer Res. 79:1263-1273(2019)

PubMed=31068700; DOI=10.1038/s41586-019-1186-3
Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. III, Barretina J., Gelfand E.T., Bielski C.M., Li H., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Nature 569:503-508(2019)
https://en.wikipedia.org/wiki/Calu-3
HEK293T CVCL_0063CVCL_0045 (HEK293)CVCL_JZ09 (293LTV) CVCL_JZ10 (293RTV) CVCL_UE53 (293T cyno BCMA)
CVCL_UE54 (293T cyno CCR6) CVCL_UE55 (293T cyno CD123) CVCL_UE56 (293T cyno CD137)
CVCL_XY80 (293T cyno CD40) CVCL_XY81 (293T cyno CSF1R) CVCL_UE58 (293T cyno DLL3)
CVCL_XY82 (293T cyno GITR) CVCL_UE57 (293T cyno LAG3) CVCL_UE59 (293T cyno OX40)
CVCL_XY83 (293T cyno PDL1) CVCL_XY84 (293T dog CSF1R) CVCL_XY85 (293T dog GITR)
CVCL_0V13 (293T GNE) CVCL_UE34 (293T human B7H4) CVCL_UE35 (293T human BCMA)
CVCL_UE36 (293T human CCR6) CVCL_UC03 (293T human CD123) CVCL_UE19 (293T human CD133)
CVCL_UE20 (293T human CD137) CVCL_XY87 (293T human CD137L) CVCL_UE21 (293T human CD138)
CVCL_UE22 (293T human CD154(CD40L)) CVCL_UE23 (293T human CD22) CVCL_XY88 (293T human CD25)
CVCL_UE24 (293T human CD33) CVCL_UE25 (293T human CD40) CVCL_XY89 (293T human CD47)
CVCL_UC04 (293T human CLDN18.1) CVCL_XY90 (293T human CLDN18.1-Flag) CVCL_UE18 (293T human CLDN18.2)
CVCL_XY91 (293T human CLDN18.2-M4) CVCL_XY86 (293T human CSF1R) CVCL_UE37 (293T human CTLA4)
CVCL_UE38 (293T human DLL3) CVCL_UE93 (293T human EGFR vIII) CVCL_UE39 (293T human Epcam)
CVCL_UE40 (293T human FOLH1) CVCL_UE41 (293T human GPC3) CVCL_UE42 (293T human LAG3)
CVCL_UE43 (293T human NRP1) CVCL_UE44 (293T human OX40) CVCL_UE45 (293T human OX40L)
CVCL_UE46 (293T human PD-1) CVCL_UE47 (293T human PDL1) CVCL_UE48 (293T human PDL2)
CVCL_XY92 (293T human PVR) CVCL_UE49 (293T human ROR1) CVCL_UE50 (293T human TIGIT)
CVCL_UE51 (293T human TIM3) CVCL_UE52 (293T human TROP2) CVCL_UE60 (293T mouse CCR6)
CVCL_UE61 (293T mouse CLDN18.2) CVCL_XY93 (293T mouse CSF1R) CVCL_XY94 (293T mouse GITR)
CVCL_XY95 (293T NF-kb luciferase reporter) CVCL_UE94 (293T OS8) CVCL_UE95 (293T OS8-hB7H4)
CVCL_UE96 (293T OS8-hPDL1) CVCL_RU09 (293T R-Spondin1 expressing) CVCL_XY96 (293T rabbit CSF1R)
CVCL_XY97 (293T rat CSF1R) CVCL_XY98 (293T rat GITR) CVCL_1H20 (293T-CEP4SIVtat)
CVCL_LC70 (293T-S) CVCL_YZ65 (293T/ACE2) CVCL_W645 (293T/APOBEC3G)
CVCL_H376 (293T/AT1) CVCL_JZ02 (293T/GFP-Puro) CVCL_KS35 (293T/NFkB-luc)
CVCL_H377 (293T/NMU2) CVCL_LC69 (293T/pAPtag-4) CVCL_BT05 (293Ta)
CVCL_AR71 (293TGPRT+R1) CVCL_9705 (293TsiLL) CVCL_1D85 (293TT)
CVCL_0P39 (5H7) CVCL_VT57 (BPKU) CVCL_KS65 (CellSensor AP1-bla HEK 293T)
CVCL_KS67 (CellSensor c-fos-bla HEK 293T) CVCL_KS57 (CellSensor CRE-bla HEK 293T) CVCL_KS62 (CellSensor ISRE-bla HEK 293T)
CVCL_KB26 (CellSensor NFAT-bla HEK 293T) CVCL_KS61 (CellSensor NFkB-bla HEK 293T) CVCL_KS17 (CellSensor SBE-bla HEK 293T)
CVCL_KS27 (CellSensor SIE-bla HEK 293T) CVCL_LF40 (GeneBLAzer UAS-bla HEK 293T) CVCL_RU08 (HA-R-Spondin1-Fc 293T)
CVCL_RW32 (Hana3A) CVCL_4U22 (HEK-SC-293T) CVCL_ZM06 (HEK293T Control-PEROXO)
CVCL_WN31 (HEK293T G6PD p.Gly131Val) CVCL_VR11 (HEK293T GALE KO clone 4) CVCL_VR12 (HEK293T GALK1 KO clone 10)
CVCL_VR13 (HEK293T GALK2 KO clone 7) CVCL_YM16 (HEK293T GAPDH-KD) CVCL_ZM07 (HEK1293T HA-PEROXO)
CVCL_QZ51 (HEK293T shPARG) CVCL_ZC45 (HEK293T SIRT1 KO) CVCL_QW54 (HEK293T SMARCB1-/-)
CVCL_HA71 (HEK293T(DMT1)) CVCL_1926 (HEK293T/17) CVCL_1H36 (HZ-293TS)
CVCL_YA24 (IDG-HEK293T-CACNA2D4-V5-OE) CVCL_YA25 (IDG-HEK293T-CACNB1-V5-OE) CVCL_YA26 (IDG-HEK293T-CACNB2-V5-OE)
CVCL_YA27 (IDG-HEK293T-CACNB4-V5-OE) CVCL_YA28 (IDG-HEK293T-CACNG1-V5-OE) CVCL_YA29 (IDG-HEK293T-CACNG3-V5-OE)
CVCL_YA30 (IDG-HEK293T-CACNG5-V5-OE) CVCL_YA31 (IDG-HEK293T-CACNG7-V5-OE) CVCL_YA32 (IDG-HEK293T-CACNG8-V5-OE)
CVCL_YA44 (IDG-HEK293T-CALHM4-V5-OE) CVCL_YA33 (IDG-HEK293T-CATSPER2-V5-OE) CVCL_YA34 (IDG-HEK293T-CHRNA10-V5-OE)
CVCL_YA35 (IDG-HEK293T-CHRNA2-V5-OE) CVCL_YA36 (IDG-HEK293T-CHRNB1-V5-OE) CVCL_YA37 (IDG-HEK293T-CHRND-V5-OE)
CVCL_YA38 (IDG-HEK293T-CLCA4-V5-OE) CVCL_YA39 (IDG-HEK293T-CLCN6-V5-OE) CVCL_YA40 (IDG-HEK293T-CLCNKA-V5-OE)
CVCL_YA41 (IDG-HEK293T-CLIC2-V5-OE) CVCL_YA42 (IDG-HEK293T-CLIC5-V5-OE) CVCL_YA43 (IDG-HEK293T-CNGA4-V5-OE)
CVCL_YA45 (IDG-HEK293T-FXYD3-V5-OE) CVCL_YA46 (IDG-HEK293T-FXYD7-V5-OE) CVCL_YA47 (IDG-HEK293T-GABRA5-V5-OE)
CVCL_YA48 (IDG-HEK293T-GABRG1-V5-OE) CVCL_YA49 (IDG-HEK293T-GABRP-V5-OE) CVCL_YA50 (IDG-HEK293T-GABRR1-V5-OE)
CVCL_YA51 (IDG-HEK293T-GLRA3-V5-OE) CVCL_YA52 (IDG-HEK293T-GRID1-isoform-1-V5-OE) CVCL_YA53 (IDG-HEK293T-GRID1-isoform-2-V5-OE)
CVCL_YA54 (IDG-HEK293T-HTR3C-V5-OE) CVCL_YA55 (IDG-HEK293T-HTR3D-V5-OE) CVCL_YA56 (IDG-HEK293T-HTR3E-V5-OE)
CVCL_YA57 (IDG-HEK293T-KCNA6-V5-OE) CVCL_YA58 (IDG-HEK293T-KCNA7-V5-OE) CVCL_YA59 (IDG-HEK293T-KCNAB2-V5-OE)
CVCL_YA60 (IDG-HEK293T-KCNAB3-V5-OE) CVCL_YA61 (IDG-HEK293T-KCNG4-V5-OE) CVCL_YA62 (IDG-HEK293T-KCNIP1-V5-OE)
CVCL_YA63 (IDG-HEK293T-KCNIP4-V5-OE) CVCL_YA64 (IDG-HEK293T-KCNJ14-V5-OE) CVCL_YA65 (IDG-HEK293T-KCNJ15-V5-OE)
CVCL_YA66 (IDG-HEK293T-KCNK12-V5-OE) CVCL_YA67 (IDG-HEK293T-KCNK4-V5-OE) CVCL_YA68 (IDG-HEK293T-KCNK7-V5-OE)
CVCL_YA69 (IDG-HEK293T-KCNS1-V5-OE) CVCL_YA70 (IDG-HEK293T-KCNS2-V5-OE) CVCL_YA71 (IDG-HEK293T-KCNS3-V5-OE)
CVCL_YA73 (IDG-HEK293T-LRRC55-V5-OE) CVCL_YA74 (IDG-HEK293T-PANX2-V5-OE) CVCL_YA75 (IDG-HEK293T-PKD1L2-V5-OE)
CVCL_YA76 (IDG-HEK293T-PKD2L2-V5-OE) CVCL_YA77 (IDG-HEK293T-PLLP-V5-OE) CVCL_YA78 (IDG-HEK293T-SCN2B-V5-OE)
CVCL_YA79 (IDG-HEK293T-SCNN1B-V5-OE) CVCL_YA80 (IDG-HEK293T-SCNN1D-V5-OE) CVCL_YA81 (IDG-HEK293T-TMC4-V5-OE)
CVCL_YA82 (IDG-HEK293T-TMEM63A-V5-OE) CVCL_YA83 (IDG-HEK293T-TMEM63B-V5-OE) CVCL_YA84 (IDG-HEK293T-TMEM63C-V5-OE)
CVCL_YA85 (IDG-HEK293T-TTYH2-V5-OE) CVCL_YZ81 (LentiPro26) CVCL_KS48 (MultiScreen HEK293T mGluR2)
CVCL_KS49 (MultiScreen HEK293T mGluR4) CVCL_RN04 (PDIS-1) CVCL_RN05 (PDIS-12)
CVCL_RN07 (PDIS-2) CVCL_RN08 (PDIS-22) CVCL_H716 (Phoenix-Ampho)
CVCL_H717 (Phoenix-Eco) CVCL_H718 (Phoenix-gp) CVCL_B489 (Plat-A)
CVCL_B488 (Plat-E) CVCL_B490 (Plat-GP) CVCL_ZU61 (RIG-I(-/-) 293T)
CVCL_AR73 (STAR) CVCL_DA04 (Tau RD P301S FRET Biosensor)
človekHomo sapiensľudskáneetickáHek293T; HEK-293T; HEK 293T; HEK-293-T; HEK 293 T; 293-T; 293 T; 293T; Human Embryonic Kidney 293T; 293tsA1609neoBunková línia využívaná pri produkcii vakcínNCBI_TaxID; 28285; Adenovirus 5;
NCBI_TaxID; 1891767; Simian virus 40 (SV40) [tsA]
UniProtKB; P00552; Transposon Tn5 neoTransformované bunkové línieobličkovéženskéembryonálne/Part of: ENCODE project common cell types; tier 3.
Part of: MD Anderson Cell Lines Project.
Doubling time: ~24-30 hours (DSMZ).
Transfected with: UniProtKB; P00552; Transposon Tn5 neo.
Transformant: NCBI_TaxID; 28285; Adenovirus 5.
Transformant: NCBI_TaxID; 1891767; Simian virus 40 (SV40) [tsA].
Omics: Deep proteome analysis.
Omics: Genome sequenced.
Omics: miRNA expression profiling.
Omics: Protein expression by reverse-phase protein arrays.
Misspelling: HECK293T; Occasionally.
Misspelling: HEK239T; Occasionally.
PubMed=3031469; DOI=10.1128/MCB.7.1.379
DuBridge R.B., Tang P., Hsia H.C., Leong P.-M., Miller J.H., Calos M.P.
Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system.
Mol. Cell. Biol. 7:379-387(1987)

PubMed=15900046; DOI=10.1093/jnci/dji133
Mashima T., Oh-hara T., Sato S., Mochizuki M., Sugimoto Y., Yamazaki K., Hamada J., Tada M., Moriuchi T., Ishikawa Y., Kato Y., Tomoda H., Yamori T., Tsuruo T.
p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.
J. Natl. Cancer Inst. 97:765-777(2005)

PubMed=25182477; DOI=10.1038/ncomms5767
Lin Y.-C., Boone M., Meuris L., Lemmens I., Van Roy N., Soete A., Reumers J., Moisse M., Plaisance S., Drmanac R., Chen J., Speleman F., Lambrechts D., Van de Peer Y., Tavernier J., Callewaert N.
Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations.
Nat. Commun. 5:4767-4767(2014)

PubMed=26694163; DOI=10.1371/journal.pone.0144924
Janiszewska J., Szaumkessel M., Kostrzewska-Poczekaj M., Bednarek K., Paczkowska J., Jackowska J., Grenman R., Szyfter K., Wierzbicka M., Giefing M., Jarmuz-Szymczak M.
Global miRNA expression profiling identifies miR-1290 as novel potential oncomiR in laryngeal carcinoma.
PLoS ONE 10:E0144924-E0144924(2015)

PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005
Li J., Zhao W., Akbani R., Liu W., Ju Z., Ling S., Vellano C.P., Roebuck P., Yu Q., Eterovic A.K., Byers L.A., Davies M.A., Deng W., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y., Mills G.B., Liang H.
Characterization of human cancer cell lines by reverse-phase protein arrays.
Cancer Cell 31:225-239(2017)

PubMed=28601559; DOI=10.1016/j.cels.2017.05.009
Bekker-Jensen D.B., Kelstrup C.D., Batth T.S., Larsen S.C., Haldrup C., Bramsen J.B., Sorensen K.D., Hoyer S., Orntoft T.F., Andersen C.L., Nielsen M.L., Olsen J.V.
An optimized shotgun strategy for the rapid generation of comprehensive human proteomes.
Cell Syst. 4:587-599.e4(2017)

DOI=10.13005/bpj/1414
Yuan J., Xu W.W.-W., Jiang S.Y.-L., Yu H.X.-Y., Poon H.-F.
The scattered twelve tribes of HEK293.
Biomed. Pharmacol. J. 11:621-623(2018)
http://genome.ucsc.edu/ENCODE/protocols/cell/human/HEK293T_Crawford_protocol.pdf
Huh-7CVCL_0336ÁnoCVCL_U442 (B76/Huh7) CVCL_RW46 (HG23) CVCL_X943 (Huh-5-2)
CVCL_ZW90 (HuH-7-END) CVCL_JG51 (Huh-7-Luc) CVCL_U459 (Huh-7-Lunet)
CVCL_7927 (Huh-7.5) CVCL_WJ09 (Huh-7/F24) CVCL_XE85 (Huh-7/M8)
CVCL_2957 (Huh-7D12) CVCL_LG22 (HuH-7T1) CVCL_UZ56 (Huh7 IFITM2-/-)
CVCL_HA62 (HUH7-ins) CVCL_4W53 (Huh7S1) CVCL_VN30 (OR6 [Human])
človekHomo sapiensľudskáetickáHuH-7; HUH-7; HuH7; Huh7; HUH7; HUH7.0; JTC-39; Japanese Tissue Culture-39Bunková línia využívaná pri produkcii vakcín//Rakovinové bunkové líniepečeňový karcinómmužskédospelé57 rokovPart of: Cancer Cell Line Encyclopedia (CCLE) project.
Part of: COSMIC cell lines project.
Part of: ENCODE project common cell types; tier 3.
Part of: JFCR45 cancer cell line panel.
Part of: Liver Cancer Model Repository (LIMORE).
Part of: MD Anderson Cell Lines Project.
Part of: TCGA-110-CL cell line panel.
Population: Japanese.
Doubling time: 32.2 hours (PubMed=31378681); ~48 hours (CLS).
Microsatellite instability: Stable (MSS) (Sanger).
Omics: Deep exome analysis.
Omics: Deep quantitative proteome analysis.
Omics: Deep RNAseq analysis.
Omics: DNA methylation analysis.
Omics: Genome sequenced.
Omics: miRNA expression profiling.
Omics: Protein expression by reverse-phase protein arrays.
Omics: SNP array analysis.
Omics: Transcriptome analysis.
PubMed=6203805; DOI=10.20772/cancersci1959.75.2_151
Nakabayashi H., Taketa K., Yamane T., Miyazaki M., Miyano K., Sato J.
Phenotypical stability of a human hepatoma cell line, HuH-7, in long-term culture with chemically defined medium.
Gann 75:151-158(1984)

DOI=10.1007/978-4-431-68349-0_4
Alexander J.J.
Human hepatoma cell lines.
(In) Neoplasms of the liver; Okuda K., Ishak K.G. (eds.); pp.47-56; Springer; Tokyo (1987)

DOI=10.11418/jtca1981.12.3_221
Namba M., Nakabayashi H., Doi I., Sato J., Miyazaki M.
Cellular characteristics and utilization of human hepatoma cell lines which were established in our laboratory and distributed by Japanese Cancer Research Resources Bank.
Tissue Cult. Res. Commun. 12:221-227(1993)

PubMed=8224613; DOI=10.1096/fasebj.7.14.8224613
Puisieux A., Galvin K., Troalen F., Bressac B., Marcais C., Galun E., Ponchel F., Yakicier C., Ji J., Ozturk M.
Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines.
FASEB J. 7:1407-1413(1993)

PubMed=8389256; DOI=10.1093/carcin/14.5.987
Hsu I.C., Tokiwa T., Bennett W., Metcalf R.A., Welsh J.A., Sun T., Harris C.C.
p53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines.
Carcinogenesis 14:987-992(1993)

PubMed=8835345; DOI=10.1002/(SICI)1096-9071(199602)48:2<133::AID-JMV3>3.0.CO;2-A
Tsuboi S., Nagamori S., Miyazaki M., Mihara K., Fukaya K., Teruya K., Kosaka T., Tsuji T., Namba M.
Persistence of hepatitis C virus RNA in established human hepatocellular carcinoma cell lines.
J. Med. Virol. 48:133-140(1996)

DOI=10.11418/jtca1981.16.3_173
Mihara K., Miyazaki M., Fushimi K., Tsuji T., Inoue Y., Fukaya K.-I., Ohashi R., Namba M.
The p53 gene status and other cellular characteristics of human cell lines maintained in our laboratory.
Tissue Cult. Res. Commun. 16:173-178(1997)

PubMed=9290701; DOI=10.1002/(SICI)1098-2744(199708)19:4<243::AID-MC5>3.0.CO;2-D
Jia L.-Q., Osada M., Ishioka C., Gamo M., Ikawa S., Suzuki T., Shimodaira H., Niitani T., Kudo T., Akiyama M., Kimura N., Matsuo M., Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.
Screening the p53 status of human cell lines using a yeast functional assay.
Mol. Carcinog. 19:243-253(1997)

PubMed=9359923; DOI=10.18926/AMO/30789
Mihara K., Miyazaki M., Kondo T., Fushimi K., Tsuji T., Inoue Y., Fukaya K.-I., Ishioka C., Namba M.
Yeast functional assay of the p53 gene status in human cell lines maintained in our laboratory.
Acta Med. Okayama 51:261-265(1997)

PubMed=10523694; DOI=10.3892/or.6.6.1267
Gao C., Ohashi R., Pu H., Inoue Y., Tsuji T., Miyazaki M., Namba M.
Yeast functional assay of the p53 gene status in 11 cell lines and 26 surgical specimens of human hepatocellular carcinoma.
Oncol. Rep. 6:1267-1271(1999)

PubMed=12029633; DOI=10.1053/jhep.2002.33683
Yasui K., Arii S., Zhao C., Imoto I., Ueda M., Nagai H., Emi M., Inazawa J.
TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas.
Hepatology 35:1476-1484(2002)

PubMed=15708988; DOI=10.1128/JVI.79.5.2689-2699.2005
Sumpter R. Jr., Loo Y.-M., Foy E., Li K., Yoneyama M., Fujita T., Lemon S.M., Gale M. Jr.
Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I.
J. Virol. 79:2689-2699(2005)

PubMed=15767549; DOI=10.1158/1535-7163.MCT-04-0234
Nakatsu N., Yoshida Y., Yamazaki K., Nakamura T., Dan S., Fukui Y., Yamori T.
Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.
Mol. Cancer Ther. 4:399-412(2005)

PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458
Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Cancer Res. 70:2158-2164(2010)

PubMed=22460905; DOI=10.1038/nature11003
Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.K., Yu J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Nature 483:603-607(2012)

PubMed=23285155; DOI=10.1371/journal.pone.0052697
Murayama A., Sugiyama N., Yoshimura S., Ishihara-Sugano M., Masaki T., Kim S., Wakita T., Mishiro S., Kato T.
A subclone of HuH-7 with enhanced intracellular hepatitis C virus production and evasion of virus related-cell cycle arrest.
PLoS ONE 7:E52697-E52697(2012)

PubMed=23505090; DOI=10.1002/hep.26402
Wang K., Lim H.Y., Shi S., Lee J., Deng S., Xie T., Zhu Z., Wang Y., Pocalyko D., Yang W.J., Rejto P.A., Mao M., Park C.-K., Xu J.
Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma.
Hepatology 58:706-717(2013)

PubMed=23887712; DOI=10.1038/ncomms3218
Nault J.-C., Mallet M., Pilati C., Calderaro J., Bioulac-Sage P., Laurent C., Laurent A., Cherqui D., Balabaud C., Zucman-Rossi J.
High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions.
Nat. Commun. 4:2218-2218(2013)

PubMed=24973239; DOI=10.1099/vir.0.065995-0
Richter M., Reimann I., Schirrmeier H., Kirkland P.D., Beer M.
The viral envelope is not sufficient to transfer the unique broad cell tropism of Bungowannah virus to a related pestivirus.
J. Gen. Virol. 95:2216-2222(2014)

PubMed=25485619; DOI=10.1038/nbt.3080
Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z., Liu H., Degenhardt J., Mayba O., Gnad F., Liu J., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.
A comprehensive transcriptional portrait of human cancer cell lines.
Nat. Biotechnol. 33:306-312(2015)

PubMed=25574106; DOI=10.3748/wjg.v21.i1.311
Cevik D., Yildiz G., Ozturk M.
Common telomerase reverse transcriptase promoter mutations in hepatocellular carcinomas from different geographical locations.
World J. Gastroenterol. 21:311-317(2015)

PubMed=27329724; DOI=10.18632/oncotarget.10161
Watari K., Nishitani A., Shibata T., Noda M., Kawahara A., Akiba J., Murakami Y., Yano H., Kuwano M., Ono M.
Phosphorylation of mTOR Ser2481 is a key target limiting the efficacy of rapalogs for treating hepatocellular carcinoma.
Oncotarget 7:47403-47417(2016)

PubMed=27397505; DOI=10.1016/j.cell.2016.06.017
Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X., Egan R.K., Liu Q., Mironenko T., Mitropoulos X., Richardson L., Wang J., Zhang T., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
A landscape of pharmacogenomic interactions in cancer.
Cell 166:740-754(2016)

PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005
Li J., Zhao W., Akbani R., Liu W., Ju Z., Ling S., Vellano C.P., Roebuck P., Yu Q., Eterovic A.K., Byers L.A., Davies M.A., Deng W., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y., Mills G.B., Liang H.
Characterization of human cancer cell lines by reverse-phase protein arrays.
Cancer Cell 31:225-239(2017)

PubMed=29610054; DOI=10.1016/j.dmpk.2018.03.003
Shi J., Wang X., Lyu L., Jiang H., Zhu H.-J.
Comparison of protein expression between human livers and the hepatic cell lines HepG2, Hep3B, and Huh7 using SWATH and MRM-HR proteomics: Focusing on drug-metabolizing enzymes.
Drug Metab. Pharmacokinet. 33:133-140(2018)

PubMed=29774518; DOI=10.1007/s13577-018-0212-3
Kasai F., Hirayama N., Ozawa M., Satoh M., Kohara A.
HuH-7 reference genome profile: complex karyotype composed of massive loss of heterozygosity.
Hum. Cell 31:261-267(2018)

PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747
Dutil J., Chen Z., Monteiro A.N., Teer J.K., Eschrich S.A.
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Cancer Res. 79:1263-1273(2019)

PubMed=31063779; DOI=10.1053/j.gastro.2019.05.001
Caruso S., Calatayud A.-L., Pilet J., La Bella T., Rekik S., Imbeaud S., Letouze E., Meunier L., Bayard Q., Rohr-Udilova N., Peneau C., Grasl-Kraupp B., de Koning L., Ouine B., Bioulac-Sage P., Couchy G., Calderaro J., Nault J.-C., Zucman-Rossi J., Rebouissou S.
Analysis of liver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response.
Gastroenterology 157:760-776(2019)

PubMed=31068700; DOI=10.1038/s41586-019-1186-3
Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. III, Barretina J., Gelfand E.T., Bielski C.M., Li H., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Nature 569:503-508(2019)

PubMed=31378681; DOI=10.1016/j.ccell.2019.07.001
Qiu Z.-X., Li H., Zhang Z.-T., Zhu Z.-F., He S., Wang X.-J., Wang P.-C., Qin J.-J., Zhuang L.-P., Wang W., Xie F.-B., Gu Y., Zou K.-K., Li C., Li C., Wang C.-H., Cen J., Chen X.-T., Shu Y.-J., Zhang Z., Sun L.-L., Min L.-H., Fu Y., Huang X.-W., Lv H., Zhou H., Ji Y., Zhang Z.-G., Meng Z.-Q., Shi X.-L., Zhang H.-B., Li Y.-X., Hui L.-J.
A pharmacogenomic landscape in human liver cancers.
Cancer Cell 36:179-193.e11(2019)

PubMed=31395879; DOI=10.1038/s41467-019-11415-2
Yu K., Chen B., Aran D., Charalel J., Yau C., Wolf D.M., van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.
Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.
Nat. Commun. 10:3574-3574(2019)

DOI=10.1101/2020.02.17.953281
Kawamoto M., Yamaji T., Saito K., Satomura K., Endo T., Fukasawa M., Hanada K., Osada N.
Identification of characteristic genomic markers in human hepatoma Huh7 and Huh7.5.1-8 cell lines.
bioRxiv 2020:953281-953281(2020)

PubMed=31978347; DOI=10.1016/j.cell.2019.12.023
Nusinow D.P., Szpyt J., Ghandi M., Rose C.M., McDonald E.R. III, Kalocsay M., Jane-Valbuena J., Gelfand E., Schweppe D.K., Jedrychowski M., Golji J., Porter D.A., Rejtar T., Wang Y.K., Kryukov G.V., Stegmeier F., Erickson B.K., Garraway L.A., Sellers W.R., Gygi S.P.
Quantitative proteomics of the Cancer Cell Line Encyclopedia.
Cell 180:387-402.e16(2020)

PubMed=32899426; DOI=10.3390/cancers12092510
Scherer D., Davila Lopez M., Goeppert B., Abrahamsson S., Gonzalez Silos R., Nova I., Marcelain K., Roa J.C., Ibberson D., Umu S.U., Rounge T.B., Roessler S., Bermejo J.L.
RNA sequencing of hepatobiliary cancer cell lines: data and applications to mutational and transcriptomic profiling.
Cancers (Basel) 12:2510.1-2510.14(2020)
https://en.wikipedia.org/wiki/Huh7
LLC-MK2CVCL_3009
ÁnoCVCL_U988 (NCTC 3196) CVCL_3069 (NCTC 3526)makak rhesusMacaca mulatta zvieraciaetickáLlc-Mk2; LLC-MK-2; LLCMK2; LLcMK2; Lilly Laboratories Cell-Monkey Kidney 2Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieobličkovéneučenédospelé/Group: Non-human primate cell line.
Characteristics: Derived from the trypsinization of a pool of kidneys from 6 adult rhesus monkeys.
Characteristics: Susceptible to SARS coronavirus (SARS-CoV) infection (PubMed=16494729).
PubMed=13821019; DOI=10.1093/oxfordjournals.aje.a120078
Evans V.J., Kerr H.A., McQuilkin W.T., Earle W.R., Hull R.N.
Growth in vitro of a long-term strain of monkey-kidney cells in medium NCTC 109 free of any added protein.
Am. J. Hyg. 70:297-302(1959)

PubMed=14449901; DOI=10.1084/jem.115.5.903
Hull R.N., Cherry W.R., Tritch O.J.
Growth characteristics of monkey kidney cell strains LLC-MK1, LLC-MK2, and LLC-MK2(NCTC-3196) and their utility in virus research.
J. Exp. Med. 115:903-918(1962)

PubMed=14185313; DOI=10.1126/science.146.3641.241
Cell Culture Collection Committee
Animal cell strains. The Cell Culture Collection Committee has assembled and certified 23 strains of animal cells.
Science 146:241-243(1964)

PubMed=18605421; DOI=10.1093/jnci/45.5.951
Ikeuchi T., Sandberg A.A.
Chromosome pulverization in virus-induced heterokaryons of mammalian cells from different species.
J. Natl. Cancer Inst. 45:951-963(1970)

PubMed=4203458
Petricciani J.C., Wallace R.E., McCoy D.W.
A comparison of three in vivo assays for cell tumorigenicity.
Cancer Res. 34:105-108(1974)

PubMed=6298990; DOI=10.1016/0378-1135(82)90056-6
McPhee D.A., Parsonson I.M., Della-Porta A.J.
Comparative studies on the growth of Australian bluetongue virus serotypes in continuous cell lines and embryonated chicken eggs.
Vet. Microbiol. 7:401-410(1982)

PubMed=16494729; DOI=10.3201/eid1201.050496
Kaye M., Druce J., Tran T., Kostecki R., Chibo D., Morris J., Catton M., Birch C.
SARS-associated coronavirus replication in cell lines.
Emerg. Infect. Dis. 12:128-133(2006)
http://fluoview.magnet.fsu.edu/gallery/cells/llcmk2/llcmk2cells.html
Efk3BCVCL_GZ34//netopier hnedýEptesicus / Vespertilio fuscus zvieraciaetickáEFK3B; Efk-3B; Efk3 clone 3B; Eptesicus fuscus kidney 3BBunková línia využívaná pri produkcii vakcínMyotis polyomavirus large T-antigen (MyPVTag)/Transformované bunkové línieobličkovémužské// Group: Bat cell line.
Characteristics: Can be used to cultivate viruses from the Coronaviridae, Filoviridae, Herpesviridae, Paramyxoviridae and Rhabdoviridae.
Doubling time: 24 hours (Kerafast).
Transformant: Myotis polyomavirus large T-antigen (MyPVTag).
PubMed=27639955; DOI=10.1016/j.jviromet.2016.09.008
Banerjee A., Rapin N., Miller M., Griebel P., Zhou Y., Munster V.J., Misra V.
Generation and characterization of Eptesicus fuscus (Big brown bat) kidney cell lines immortalized using the Myotis polyomavirus large T-antigen.
J. Virol. Methods 237:166-173(2016)
http://usask.technologypublisher.com/tech/Eptesicus_fuscus_(Big_Brown_Bat)_kidney_immortalized_cell_line
CHO-K1CVCL_0214CVCL_0213 (CHO)CVCL_8544 (AR-EcoScreen) CVCL_J386 (C54) CVCL_J387 (C55.7)
CVCL_KU72 (cAMP Hunter CHO-K1 ADCYAP1R1 Gs/Gq) CVCL_KU73 (cAMP Hunter CHO-K1 ADORA1 Gi) CVCL_KU74 (cAMP Hunter CHO-K1 ADORA2B Gs)
CVCL_KU75 (cAMP Hunter CHO-K1 ADORA3 Gi) CVCL_KU76 (cAMP Hunter CHO-K1 ADRA2A Gi) CVCL_KU77 (cAMP Hunter CHO-K1 ADRA2C Gi)
CVCL_KU78 (cAMP Hunter CHO-K1 ADRB1 Gs) CVCL_KU79 (cAMP Hunter CHO-K1 ADRB2 Gs) CVCL_KU80 (cAMP Hunter CHO-K1 AGTRL1 Gi)
CVCL_KU81 (cAMP Hunter CHO-K1 AVPR2 Gs) CVCL_KU82 (cAMP Hunter CHO-K1 C3AR1 Gi) CVCL_KU83 (cAMP Hunter CHO-K1 C5AR1 Gi)
CVCL_KU84 (cAMP Hunter CHO-K1 CALCR Gs) CVCL_KU85 (cAMP Hunter CHO-K1 CALCRL-RAMP1 Gs) CVCL_KU86 (cAMP Hunter CHO-K1 CALCRL-RAMP3 Gs)
CVCL_KU87 (cAMP Hunter CHO-K1 CCR1 Gi) CVCL_KU88 (cAMP Hunter CHO-K1 CCR10 Gi) CVCL_KU89 (cAMP Hunter CHO-K1 CCR5 Gi)
CVCL_KU90 (cAMP Hunter CHO-K1 CCR6 Gi) CVCL_KU91 (cAMP Hunter CHO-K1 CCR7 Gi) CVCL_KU92 (cAMP Hunter CHO-K1 CHRM2 Gs)
CVCL_KU93 (cAMP Hunter CHO-K1 CHRM4 Gs) CVCL_KU94 (cAMP Hunter CHO-K1 CMKLR1 Gi) CVCL_KU95 (cAMP Hunter CHO-K1 CNR1 Gi)
CVCL_KU96 (cAMP Hunter CHO-K1 CNR2 Gi) CVCL_KU97 (cAMP Hunter CHO-K1 CRHR1 Gs) CVCL_KU98 (cAMP Hunter CHO-K1 CRHR2 Gs)
CVCL_KU99 (cAMP Hunter CHO-K1 CRTH2 Gi) CVCL_KV00 (cAMP Hunter CHO-K1 CXCR1 Gi) CVCL_KV01 (cAMP Hunter CHO-K1 CXCR2 Gi)
CVCL_KV02 (cAMP Hunter CHO-K1 CXCR3 Gi) CVCL_KV03 (cAMP Hunter CHO-K1 CXCR4 Gi) CVCL_KV04 (cAMP Hunter CHO-K1 CXCR5 Gi)
CVCL_KV05 (cAMP Hunter CHO-K1 CXCR6 Gi) CVCL_KV06 (cAMP Hunter CHO-K1 DRD1 Gs) CVCL_KV07 (cAMP Hunter CHO-K1 DRD2L Gi)
CVCL_KV08 (cAMP Hunter CHO-K1 DRD2S Gi) CVCL_KV09 (cAMP Hunter CHO-K1 DRD4 Gi) CVCL_KV10 (cAMP Hunter CHO-K1 DRD5 Gs)
CVCL_KV11 (cAMP Hunter CHO-K1 EBI2 Gi) CVCL_KV12 (cAMP Hunter CHO-K1 EDG1 Gi) CVCL_KV13 (cAMP Hunter CHO-K1 EDG2 Gi)
CVCL_KV14 (cAMP Hunter CHO-K1 FFAR3 Gi) CVCL_KV15 (cAMP Hunter CHO-K1 FPR1 Gi) CVCL_KV16 (cAMP Hunter CHO-K1 FPR3 Gi)
CVCL_KV17 (cAMP Hunter CHO-K1 FPRL1 Gi) CVCL_KV18 (cAMP Hunter CHO-K1 FSHR Gs) CVCL_KV19 (cAMP Hunter CHO-K1 GABBR1-GABBR2 Gi)
CVCL_KV20 (cAMP Hunter CHO-K1 GALR1 Gi) CVCL_KV21 (cAMP Hunter CHO-K1 GCGR Gs) CVCL_KV22 (cAMP Hunter CHO-K1 GHRHR Gs)
CVCL_KV23 (cAMP Hunter CHO-K1 GIPR Gs) CVCL_KV24 (cAMP Hunter CHO-K1 GLP1R Gs) CVCL_KV25 (cAMP Hunter CHO-K1 GLP2R Gs)
CVCL_KV26 (cAMP Hunter CHO-K1 GPBAR1 Gs) CVCL_KV27 (cAMP Hunter CHO-K1 GPR109A Gi) CVCL_KV28 (cAMP Hunter CHO-K1 GPR109B Gi)
CVCL_KV29 (cAMP Hunter CHO-K1 GPR35 Gi) CVCL_KV30 (cAMP Hunter CHO-K1 GPR81 Gi) CVCL_KV31 (cAMP Hunter CHO-K1 GPR84 Gi)
CVCL_KV32 (cAMP Hunter CHO-K1 GRM2 Gi) CVCL_KV33 (cAMP Hunter CHO-K1 GRM3 Gi) CVCL_KV34 (cAMP Hunter CHO-K1 GRM4 Gi)
CVCL_KV35 (cAMP Hunter CHO-K1 GRM6 Gi) CVCL_KV36 (cAMP Hunter CHO-K1 HRH2 Gs/Gq) CVCL_KV37 (cAMP Hunter CHO-K1 HRH3 Gi)
CVCL_KV38 (cAMP Hunter CHO-K1 HTR1A Gi) CVCL_KV39 (cAMP Hunter CHO-K1 HTR1B Gi) CVCL_KV40 (cAMP Hunter CHO-K1 HTR1F Gi)
CVCL_KV41 (cAMP Hunter CHO-K1 HTR5A Gi) CVCL_KV42 (cAMP Hunter CHO-K1 HTR7A Gs) CVCL_KV43 (cAMP Hunter CHO-K1 LHCGR Gs)
CVCL_KV44 (cAMP Hunter CHO-K1 LTB4R Gi) CVCL_KV45 (cAMP Hunter CHO-K1 MC1R Gs) CVCL_KV46 (cAMP Hunter CHO-K1 MC3R Gs)
CVCL_KV47 (cAMP Hunter CHO-K1 MC4R Gs) CVCL_KV48 (cAMP Hunter CHO-K1 MC5R Gs) CVCL_KV49 (cAMP Hunter CHO-K1 MCHR1 Gi)
CVCL_KV50 (cAMP Hunter CHO-K1 mGIPR Gs) CVCL_KV51 (cAMP Hunter CHO-K1 mRXFP1 Gs) CVCL_KV52 (cAMP Hunter CHO-K1 mTAAR1 Gs)
CVCL_KV53 (cAMP Hunter CHO-K1 MTNR1A Gi) CVCL_KV54 (cAMP Hunter CHO-K1 MTNR1B Gi) CVCL_KV55 (cAMP Hunter CHO-K1 NPBWR1 Gi)
CVCL_KV56 (cAMP Hunter CHO-K1 NPBWR2 Gi) CVCL_KV57 (cAMP Hunter CHO-K1 NPFFR1 Gi) CVCL_KV58 (cAMP Hunter CHO-K1 NPY2R Gi)
CVCL_KV59 (cAMP Hunter CHO-K1 OPRD1 Gi) CVCL_KV60 (cAMP Hunter CHO-K1 OPRK1 Gi) CVCL_KV61 (cAMP Hunter CHO-K1 OPRL1 Gi)
CVCL_KV62 (cAMP Hunter CHO-K1 OPRM1 Gi) CVCL_KV63 (cAMP Hunter CHO-K1 OXER1 Gi) CVCL_KV64 (cAMP Hunter CHO-K1 PPYR1 Gi)
CVCL_KV65 (cAMP Hunter CHO-K1 PROKR1 Gs) CVCL_KV66 (cAMP Hunter CHO-K1 PTAFR Gi) CVCL_KV67 (cAMP Hunter CHO-K1 PTGDR Gs)
CVCL_KV68 (cAMP Hunter CHO-K1 PTGER3 Gi) CVCL_KV69 (cAMP Hunter CHO-K1 PTGIR Gs) CVCL_KV70 (cAMP Hunter CHO-K1 PTHR1 Gs/Gq)
CVCL_KV71 (cAMP Hunter CHO-K1 PTHR2 Gs/Gq) CVCL_KV72 (cAMP Hunter CHO-K1 rDRD1 Gs) CVCL_KV73 (cAMP Hunter CHO-K1 rDRD2L Gi)
CVCL_KV74 (cAMP Hunter CHO-K1 rDRD2S Gi) CVCL_KV75 (cAMP Hunter CHO-K1 rTAAR1 Gs) CVCL_KV76 (cAMP Hunter CHO-K1 RXFP1 Gs)
CVCL_KV77 (cAMP Hunter CHO-K1 RXFP2 Gs) CVCL_KV78 (cAMP Hunter CHO-K1 RXFP3 Gi) CVCL_KV79 (cAMP Hunter CHO-K1 RXFP4 Gi)
CVCL_KV80 (cAMP Hunter CHO-K1 SCTR Gs) CVCL_KV81 (cAMP Hunter CHO-K1 SSTR2 Gi) CVCL_KV82 (cAMP Hunter CHO-K1 SSTR3 Gi)
CVCL_KV83 (cAMP Hunter CHO-K1 SSTR4 Gi) CVCL_KV84 (cAMP Hunter CHO-K1 SSTR5 Gi) CVCL_KV85 (cAMP Hunter CHO-K1 TAAR1 Gs)
CVCL_KV86 (cAMP Hunter CHO-K1 TACR3 Gs/Gq) CVCL_KV87 (cAMP Hunter CHO-K1 TSHR(L) Gs) CVCL_KV88 (cAMP Hunter CHO-K1 VIPR1 Gs/Gq)
CVCL_KV89 (cAMP Hunter CHO-K1 VIPR2 Gs) CVCL_KV90 (cAMP Hunter CHO-K1 XCR1 Gi) CVCL_KR97 (CellSensor CRE-bla CHO-K1)
CVCL_KB29 (CellSensor NFAT-bla CHO-K1) CVCL_AZ68 (CHO 13-5-1) CVCL_AZ69 (CHO 14-2-1)
CVCL_VU04 (CHO 15B) CVCL_4V31 (CHO 15DACT) CVCL_JL49 (CHO 1C T6)
CVCL_GX98 (CHO 22H11) CVCL_U429 (CHO 25-RA) CVCL_K254 (CHO 4364)
CVCL_HC66 (CHO 7PA2) CVCL_HC65 (CHO 7WD10) CVCL_1N32 (CHO Ade-A)
CVCL_1N33 (CHO Ade-B) CVCL_1N34 (CHO Ade-C) CVCL_1N35 (CHO Ade-D)
CVCL_1N36 (CHO Ade-E) CVCL_1N37 (CHO Ade-F) CVCL_1N38 (CHO Ade-G)
CVCL_1N39 (CHO Ade-H) CVCL_1N40 (CHO Ade-I) CVCL_1N41 (CHO Ade-PAB)
CVCL_UZ04 (CHO Ade-PcG) CVCL_UZ89 (CHO BLMR-1) CVCL_UZ90 (CHO BLMR-2)
CVCL_UZ91 (CHO BLMR-3) CVCL_UZ92 (CHO BLMR-4) CVCL_DR98 (CHO CAT-S)
CVCL_GP77 (CHO CERT) CVCL_RW58 (CHO DRA10) CVCL_9Y69 (CHO HcD6)
CVCL_1Y10 (CHO JR-FL gp160 (Clone A19)) CVCL_1H27 (CHO NL4-3 gp120) CVCL_1G49 (CHO NL4-3 gp160)
CVCL_1Y08 (CHO PBj gp130) CVCL_UZ06 (CHO SH-87) CVCL_W649 (CHO ST4.2)
CVCL_V348 (CHO Tet-On 3G) CVCL_GP78 (CHO XBP1s) CVCL_U217 (CHO(pMAM-HSluc))
CVCL_U218 (CHO(pMAM-luc)) CVCL_V326 (CHO-22) CVCL_XD05 (CHO-5-HT1B)
CVCL_4700 (CHO-6) CVCL_D893 (CHO-7) CVCL_V327 (CHO-91)
CVCL_V328 (CHO-91-22) CVCL_V329 (CHO-91-22-47-67) CVCL_V330 (CHO-91-47-67)
CVCL_H340 (CHO-A7) CVCL_DE19 (CHO-AT3-2) CVCL_VR93 (CHO-CH3S)
CVCL_U002 (CHO-CHRM1) CVCL_U003 (CHO-CHRM2) CVCL_U004 (CHO-CHRM5)
CVCL_U000 (CHO-CNR1) CVCL_5A37 (CHO-CUR2) CVCL_D583 (CHO-CUR3)
CVCL_S542 (CHO-EE) CVCL_U005 (CHO-FFAR2) CVCL_T763 (CHO-FLAG-hBLT1)
CVCL_1N80 (CHO-GAT) CVCL_U406 (CHO-glyA) CVCL_U407 (CHO-glyB)
CVCL_U007 (CHO-GPR120) CVCL_H215 (CHO-GS) CVCL_T764 (CHO-HA-hBLT2)
CVCL_LH55 (CHO-hAANAT) CVCL_1B31 (CHO-hD3) CVCL_X975 (CHO-hL1)
CVCL_1F91 (CHO-hNCX1) CVCL_UW80 (CHO-HPX) CVCL_XD06 (CHO-HRH1)
CVCL_1F92 (CHO-hTRPV1) CVCL_AS85 (CHO-ICAM-1Fc) CVCL_5I89 (CHO-K1 (+Galpha16) AequoScreen)
CVCL_5I90 (CHO-K1 (+Gqi5) AequoScreen) CVCL_LF20 (CHO-K1 (GS Null) HD-BIOP3) CVCL_U864 (CHO-K1 (SC))
CVCL_KU49 (CHO-K1 ADRA1A Gq) CVCL_5I91 (CHO-K1 AequoScreen) CVCL_KU50 (CHO-K1 BDKRB1 Gq)
CVCL_KU51 (CHO-K1 BRS3 Gq) CVCL_VG09 (CHO-K1 cat FFAR4) CVCL_XZ32 (CHO-K1 cyno ICOS)
CVCL_XZ33 (CHO-K1 cyno MSLN) CVCL_XZ34 (CHO-K1 cyno TNFRSF1B) CVCL_XZ35 (CHO-K1 cyno TPBG)
CVCL_KU52 (CHO-K1 CYSLTR2 Gq) CVCL_YD16 (CHO-K1 Dd-B6) CVCL_YD17 (CHO-K1 Dd-B7)
CVCL_XZ36 (CHO-K1 dog CD47) CVCL_YD18 (CHO-K1 Ed-A1) CVCL_YD19 (CHO-K1 Ed-B8)
CVCL_KU53 (CHO-K1 EDG3 Gq) CVCL_KU54 (CHO-K1 EDG4 Gq) CVCL_KU55 (CHO-K1 F2RL1 Gq)
CVCL_KU56 (CHO-K1 FFAR1 Gq) CVCL_KU57 (CHO-K1 FFAR2 Gq) CVCL_KU58 (CHO-K1 GALR2 Gq)
CVCL_KU59 (CHO-K1 GNRHR Gq) CVCL_KU60 (CHO-K1 GPR17 Gq) CVCL_LC01 (CHO-K1 h-GABA-b R1a/R2)
CVCL_XZ37 (CHO-K1 human CD154(CD40L)) CVCL_XZ38 (CHO-K1 human CD16a-F158) CVCL_XZ39 (CHO-K1 human CD16a-V158)
CVCL_UE26 (CHO-K1 human CD47) CVCL_XZ40 (CHO-K1 human CD70) CVCL_XZ41 (CHO-K1 human CLDN18.1)
CVCL_XZ42 (CHO-K1 human CLDN18.2) CVCL_UE27 (CHO-K1 human INSR) CVCL_UE28 (CHO-K1 human MSLN)
CVCL_XZ43 (CHO-K1 human NTRK1) CVCL_XZ44 (CHO-K1 human TNFRSF1B) CVCL_VU05 (CHO-K1 MMC-1)
CVCL_VU06 (CHO-K1 MMC-2) CVCL_VU07 (CHO-K1 MMC-3) CVCL_VU08 (CHO-K1 MMC-4)
CVCL_VU09 (CHO-K1 MMC-5) CVCL_XZ45 (CHO-K1 mouse ICOS) CVCL_XZ46 (CHO-K1 OS8)
CVCL_XZ47 (CHO-K1 OS8-SIGLEC15) CVCL_KU61 (CHO-K1 PTGER1 Gq) CVCL_KU62 (CHO-K1 PTGFR Gq)
CVCL_XZ48 (CHO-K1 rabbit CD47) CVCL_XZ49 (CHO-K1 rat CD47) CVCL_KU42 (CHO-K1 Tet-On)
CVCL_ZE99 (CHO-K1 UA10) CVCL_AR65 (CHO-K1-AC-free) CVCL_Y502 (CHO-K1-BH4)
CVCL_XI04 (CHO-K1-ESM) CVCL_1F96 (CHO-K1-Gln(-)) CVCL_9U94 (CHO-K1-SFM)
CVCL_UW12 (CHO-K1-XIAP) CVCL_DE93 (CHO-K1.Cl-0204) CVCL_DE94 (CHO-K1.Cl-0205)
CVCL_DE95 (CHO-K1.Cl-0206) CVCL_DE96 (CHO-K1.Cl-0235) CVCL_DE97 (CHO-K1.Cl-0236)
CVCL_DE98 (CHO-K1.Cl-0237) CVCL_DE99 (CHO-K1.Cl-0238) CVCL_DF00 (CHO-K1.Cl-0239)
CVCL_DF01 (CHO-K1.Cl-0270) CVCL_DF02 (CHO-K1.Cl6) CVCL_DF03 (CHO-K1.Cl7)
CVCL_KA46 (CHO-K1/4-1BB) CVCL_H379 (CHO-K1/5-HT2A) CVCL_H380 (CHO-K1/5-HT2B)
CVCL_H381 (CHO-K1/5-HT2C) CVCL_H387 (CHO-K1/ADRA1A) CVCL_H388 (CHO-K1/ADRA1B)
CVCL_H389 (CHO-K1/ADRA1D) CVCL_H396 (CHO-K1/AM1) CVCL_KA47 (CHO-K1/B7-H3)
CVCL_KA48 (CHO-K1/B7-H4) CVCL_H404 (CHO-K1/BB1) CVCL_H405 (CHO-K1/BB2)
CVCL_H406 (CHO-K1/BB3) CVCL_KA49 (CHO-K1/BTLA) CVCL_H408 (CHO-K1/CASR)
CVCL_H410 (CHO-K1/CB2) CVCL_H412 (CHO-K1/CCKB) CVCL_KA24 (CHO-K1/CD160)
CVCL_KA22 (CHO-K1/CD16A 158F) CVCL_KA23 (CHO-K1/CD16B) CVCL_KA25 (CHO-K1/CD200 R1)
CVCL_KA26 (CHO-K1/CD27) CVCL_KA28 (CHO-K1/CD32A 131Arg) CVCL_KA27 (CHO-K1/CD32A 131His)
CVCL_KA29 (CHO-K1/CD32B 232Ile) CVCL_KA30 (CHO-K1/CD32B 232Thr) CVCL_KA31 (CHO-K1/CD32C 13Gln)
CVCL_KA32 (CHO-K1/CD38) CVCL_KA33 (CHO-K1/CD40) CVCL_KA34 (CHO-K1/CD47)
CVCL_KA35 (CHO-K1/CD80) CVCL_KA36 (CHO-K1/CD86) CVCL_H414 (CHO-K1/CRE-Luc)
CVCL_KA77 (CHO-K1/CRE/Luc) CVCL_KA67 (CHO-K1/CT) CVCL_KA37 (CHO-K1/CTLA4)
CVCL_KA50 (CHO-K1/cyno 4-1BB) CVCL_KA51 (CHO-K1/cyno CTLA4) CVCL_KA52 (CHO-K1/cyno FLT3)
CVCL_KA53 (CHO-K1/cyno PD-1) CVCL_KA54 (CHO-K1/cyno PD-L1) CVCL_H419 (CHO-K1/CysLT2)
CVCL_H420 (CHO-K1/D1) CVCL_H426 (CHO-K1/EDNRA) CVCL_H427 (CHO-K1/EDNRB)
CVCL_KA38 (CHO-K1/FLT3) CVCL_H434 (CHO-K1/GAL2) CVCL_H446 (CHO-K1/Galpha15)
CVCL_H435 (CHO-K1/GCGR/Galpha15) CVCL_H436 (CHO-K1/GHSR) CVCL_KA39 (CHO-K1/GITR)
CVCL_H441 (CHO-K1/GPBAR1) CVCL_H447 (CHO-K1/Gqi5) CVCL_H512 (CHO-K1/hERG)
CVCL_H452 (CHO-K1/KiSS1) CVCL_KA40 (CHO-K1/Lag3) CVCL_H454 (CHO-K1/M1)
CVCL_H456 (CHO-K1/M3) CVCL_H458 (CHO-K1/M5) CVCL_H463 (CHO-K1/MCH2)
CVCL_KA55 (CHO-K1/mouse 4-1BB) CVCL_KA19 (CHO-K1/mouse ADORA2A) CVCL_KA56 (CHO-K1/mouse CTLA4)
CVCL_KA57 (CHO-K1/mouse FLT3) CVCL_KA58 (CHO-K1/mouse PD-1) CVCL_KA59 (CHO-K1/mouse PD-L1)
CVCL_KA06 (CHO-K1/mouse TIGIT) CVCL_H465 (CHO-K1/MRGPRX2) CVCL_H470 (CHO-K1/NK1)
CVCL_H471 (CHO-K1/NK2) CVCL_H472 (CHO-K1/NK3) CVCL_H473 (CHO-K1/NMU1)
CVCL_H482 (CHO-K1/NTS1) CVCL_KA41 (CHO-K1/OX-40) CVCL_KA42 (CHO-K1/OX-40L)
CVCL_H487 (CHO-K1/OX1) CVCL_H488 (CHO-K1/OX2) CVCL_H491 (CHO-K1/OXTR)
CVCL_H494 (CHO-K1/PAR4) CVCL_KA44 (CHO-K1/PD-L1) CVCL_KA43 (CHO-K1/PD1)
CVCL_H495 (CHO-K1/PRLHR) CVCL_H496 (CHO-K1/PTAFR) CVCL_8850 (CHO-K1/SF)
CVCL_KA60 (CHO-K1/SIRP alpha) CVCL_KA61 (CHO-K1/SIRP gamma) CVCL_KA05 (CHO-K1/TIGIT)
CVCL_KA45 (CHO-K1/Tim3) CVCL_H505 (CHO-K1/TRH1) CVCL_H507 (CHO-K1/V1A)
CVCL_H508 (CHO-K1/V1B) CVCL_KA62 (CHO-K1/VISTA) CVCL_6F16 (CHO-K1v)
CVCL_J422 (CHO-LY-A) CVCL_4701 (CHO-LY-B) CVCL_H628 (CHO-M19)
CVCL_CW95 (CHO-mB7) CVCL_U366 (CHO-MCHR2) CVCL_S408 (CHO-MK42)
CVCL_X976 (CHO-mL1) CVCL_DG55 (CHO-MOG) CVCL_YA13 (CHO-mPDPN)
CVCL_U001 (CHO-NPY1R) CVCL_U008 (CHO-OPRL1) CVCL_S541 (CHO-PI)
CVCL_VA36 (CHO-R5) CVCL_4669 (CHO-RD) CVCL_S543 (CHO-SEC)
CVCL_EP77 (CHO-SNS22) CVCL_T760 (CHO-SPB-1) CVCL_U009 (CHO-SSTR1)
CVCL_U420 (CHO-TRVb) CVCL_5A23 (CHO-UKB25) CVCL_S544 (CHO-WT)
CVCL_5A38 (CHO-xrs-1) CVCL_5A39 (CHO-xrs-4) CVCL_4601 (CHO-xrs-5)
CVCL_4340 (CHO-xrs-6) CVCL_5A40 (CHO-xrs-7) CVCL_T032 (CHO.1F8)
CVCL_A8V4 (CHO/CD20) CVCL_KS38 (CHO/CREB-luc) CVCL_IY41 (CHO/Galpha16)
CVCL_IY42 (CHO/Gqi5 G418-resistant) CVCL_IY43 (CHO/Gqi5 hygromycin-resistant) CVCL_IY44 (CHO/Gqo5)
CVCL_IY45 (CHO/Gqs5 G418-resistant) CVCL_IY46 (CHO/Gqs5 hygromycin-resistant) CVCL_IY47 (CHO/Gqz5 G418-resistant)
CVCL_IY48 (CHO/Gqz5 hygromycin-resistant) CVCL_HC54 (CHO/Kcnk3) CVCL_HC55 (CHO/Kcnk3/Kcnk9)
CVCL_HC56 (CHO/Kcnk9) CVCL_F973 (CHO/OAR2-3) CVCL_F974 (CHO/OAR6-6)
CVCL_RU92 (CHO10PV) CVCL_IM59 (CHO12RO) CVCL_RU93 (CHO181PV)
CVCL_RU94 (CHO191PV) CVCL_RU95 (CHO192PV) CVCL_RU96 (CHO201PV)
CVCL_RU97 (CHO202PV) CVCL_RU98 (CHO203PV) CVCL_RU99 (CHO204PV)
CVCL_RV00 (CHO205PV) CVCL_RV01 (CHO211PV) CVCL_RV02 (CHO23PV)
CVCL_RV03 (CHO2PV) CVCL_RV04 (CHO302PV) CVCL_RV05 (CHO30PV)
CVCL_IM60 (CHO33RO) CVCL_RV06 (CHO3PV) CVCL_RV07 (CHO40PV)
CVCL_RV08 (CHO421PV) CVCL_RV09 (CHO423PV) CVCL_IM61 (CHO43RO)
CVCL_RV10 (CHO4PV) CVCL_RV11 (CHO50PV) CVCL_RV12 (CHO51PV)
CVCL_RV13 (CHO5PV) CVCL_RV14 (CHO60PV) CVCL_RV15 (CHO7PV)
CVCL_RV16 (CHO9PV) CVCL_VN06 (CHOExpress) CVCL_DR95 (CHOK1SV)
CVCL_RJ71 (CHOP-TU) CVCL_HA81 (CHOR 3-4) CVCL_UG11 (CHOR16)
CVCL_HB34 (CHOTKa) CVCL_RN03 (CHOZN GS-/-) CVCL_DD09 (CsR-1000)
CVCL_U417 (DTE 1-6-4) CVCL_U418 (DTF 1-5-1) CVCL_U419 (DTG 1-5-4)
CVCL_VU25 (E46.4) CVCL_VU26 (E77.4) CVCL_U424 (Flp-In-CHO)
CVCL_KR96 (GeneBLAzer CMV-bla CHO-K1) CVCL_1S10 (GM10926) CVCL_1S24 (GM11418)
CVCL_DD03 (HA-CHO) CVCL_VL22 (hD2L-CHO) CVCL_VL23 (hD3-CHO)
CVCL_6G75 (IA1-7) CVCL_VL74 (JPO2) CVCL_VL73 (JPO9)
CVCL_W354 (JW152) CVCL_1V03 (LdlD) CVCL_JY00 (LdlF)
CVCL_A9P5 (LIGHT-CHO) CVCL_YJ77 (LINTERNA CHO-K1) CVCL_3842 (M1WT2)
CVCL_3843 (M1WT3) CVCL_3844 (M1WT5) CVCL_4579 (M3WT4)
CVCL_4580 (M3WT5) CVCL_4581 (M3WT8) CVCL_IP24 (MI5-4)
CVCL_IP25 (MI8-5) CVCL_HC53 (mRG1) CVCL_0442 (MT58)
CVCL_JA54 (NCI-CHOdeltafurin) CVCL_A9P1 (NF-KappaB reporter (Luc)-CHO-K1) CVCL_U863 (NLS-6-5)
CVCL_KW22 (PathHunter CHO-K1 ADCYAP1R1 beta-arrestin) CVCL_KW23 (PathHunter CHO-K1 ADORA1 beta-arrestin) CVCL_KW24 (PathHunter CHO-K1 ADORA3 beta-arrestin)
CVCL_KW25 (PathHunter CHO-K1 ADRA1B beta-arrestin) CVCL_KW26 (PathHunter CHO-K1 ADRA2A beta-arrestin) CVCL_KW27 (PathHunter CHO-K1 ADRA2B beta-arrestin)
CVCL_KW28 (PathHunter CHO-K1 ADRA2C beta-arrestin) CVCL_KW29 (PathHunter CHO-K1 ADRB1 beta-arrestin) CVCL_KW30 (PathHunter CHO-K1 ADRB2 beta-arrestin)
CVCL_KW31 (PathHunter CHO-K1 AGTR1 beta-arrestin) CVCL_KW32 (PathHunter CHO-K1 AGTRL1 beta-arrestin) CVCL_KW33 (PathHunter CHO-K1 AGTRL1 beta-arrestin-1)
CVCL_KW34 (PathHunter CHO-K1 AR Protein Interaction) CVCL_KW35 (PathHunter CHO-K1 AVPR1B beta-arrestin) CVCL_KW36 (PathHunter CHO-K1 AVPR2 beta-arrestin)
CVCL_KW37 (PathHunter CHO-K1 BAI1 beta-arrestin) CVCL_KW38 (PathHunter CHO-K1 BAI2 beta-arrestin) CVCL_KW39 (PathHunter CHO-K1 BAI3 beta-arrestin)
CVCL_KW40 (PathHunter CHO-K1 BDKRB1 beta-arrestin) CVCL_KW41 (PathHunter CHO-K1 BDKRB2 beta-arrestin) CVCL_KW42 (PathHunter CHO-K1 beta-arrestin1-EA Parental)
CVCL_KW43 (PathHunter CHO-K1 beta-arrestin2-EA Parental) CVCL_KW44 (PathHunter CHO-K1 BRS3 beta-arrestin) CVCL_KW45 (PathHunter CHO-K1 C5AR1 beta-arrestin)
CVCL_KW46 (PathHunter CHO-K1 C5L2 beta-arrestin) CVCL_KW47 (PathHunter CHO-K1 CALCR beta-arrestin) CVCL_KW48 (PathHunter CHO-K1 CALCR-RAMP1 beta-arrestin)
CVCL_KW51 (PathHunter CHO-K1 CALCR-RAMP2 beta-arrestin) CVCL_KW52 (PathHunter CHO-K1 CALCR-RAMP3 beta-arrestin) CVCL_KW49 (PathHunter CHO-K1 CALCRL-RAMP2 beta-arrestin)
CVCL_KW50 (PathHunter CHO-K1 CALCRL-RAMP3 beta-arrestin) CVCL_KW53 (PathHunter CHO-K1 CCKAR beta-arrestin) CVCL_KW54 (PathHunter CHO-K1 CCKBR beta-arrestin)
CVCL_KW55 (PathHunter CHO-K1 CCR1 beta-arrestin) CVCL_KW56 (PathHunter CHO-K1 CCR2 beta-arrestin) CVCL_KW57 (PathHunter CHO-K1 CCR3 beta-arrestin)
CVCL_KW58 (PathHunter CHO-K1 CCR4 beta-arrestin) CVCL_KW59 (PathHunter CHO-K1 CCR5 beta-arrestin) CVCL_KW60 (PathHunter CHO-K1 CCR6 beta-arrestin)
CVCL_KW61 (PathHunter CHO-K1 CCR7 beta-arrestin) CVCL_KW62 (PathHunter CHO-K1 CCR8 beta-arrestin) CVCL_KW63 (PathHunter CHO-K1 CCR9 beta-arrestin)
CVCL_KW64 (PathHunter CHO-K1 CCRL1 beta-arrestin) CVCL_KW65 (PathHunter CHO-K1 CCRL2 beta-arrestin) CVCL_KW66 (PathHunter CHO-K1 cEDG5 beta-arrestin)
CVCL_KW67 (PathHunter CHO-K1 CHRM1 beta-arrestin) CVCL_KW68 (PathHunter CHO-K1 CHRM2 beta-arrestin) CVCL_KW69 (PathHunter CHO-K1 CHRM4 beta-arrestin)
CVCL_KW70 (PathHunter CHO-K1 CHRM5 beta-arrestin) CVCL_KW71 (PathHunter CHO-K1 CMKLR1 beta-arrestin) CVCL_KW72 (PathHunter CHO-K1 CNR1 beta-arrestin)
CVCL_KW73 (PathHunter CHO-K1 CNR2 beta-arrestin) CVCL_KW74 (PathHunter CHO-K1 CRHR1 beta-arrestin) CVCL_KW75 (PathHunter CHO-K1 CRHR2 beta-arrestin)
CVCL_KW76 (PathHunter CHO-K1 CRTH2 beta-arrestin) CVCL_KW77 (PathHunter CHO-K1 CX3CR1 beta-arrestin) CVCL_KW78 (PathHunter CHO-K1 CXCR2 beta-arrestin)
CVCL_KW79 (PathHunter CHO-K1 CXCR3 beta-arrestin) CVCL_KW80 (PathHunter CHO-K1 CXCR5 beta-arrestin) CVCL_KW81 (PathHunter CHO-K1 CXCR6 beta-arrestin)
CVCL_KW82 (PathHunter CHO-K1 CXCR7 beta-arrestin) CVCL_KW83 (PathHunter CHO-K1 cyno GPR120 beta-arrestin) CVCL_KW84 (PathHunter CHO-K1 DARC beta-arrestin)
CVCL_KW85 (PathHunter CHO-K1 DRD1 beta-arrestin) CVCL_KW86 (PathHunter CHO-K1 DRD2L beta-arrestin) CVCL_KW87 (PathHunter CHO-K1 DRD2S beta-arrestin)
CVCL_KW88 (PathHunter CHO-K1 DRD3 beta-arrestin) CVCL_KW89 (PathHunter CHO-K1 DRD4 beta-arrestin) CVCL_KW90 (PathHunter CHO-K1 DRD5 beta-arrestin)
CVCL_KW91 (PathHunter CHO-K1 EBI2 beta-arrestin) CVCL_KW92 (PathHunter CHO-K1 EDG1 beta-arrestin) CVCL_KW93 (PathHunter CHO-K1 EDG2 beta-arrestin)
CVCL_KW94 (PathHunter CHO-K1 EDG3 beta-arrestin) CVCL_KW95 (PathHunter CHO-K1 EDG4 beta-arrestin) CVCL_KW96 (PathHunter CHO-K1 EDG5 beta-arrestin)
CVCL_KW97 (PathHunter CHO-K1 EDG6 beta-arrestin) CVCL_KW98 (PathHunter CHO-K1 EDG7 beta-arrestin) CVCL_KW99 (PathHunter CHO-K1 EDNRA beta-arrestin)
CVCL_KX00 (PathHunter CHO-K1 EDNRB beta-arrestin) CVCL_KX01 (PathHunter CHO-K1 ERalpha Protein Interaction) CVCL_KX02 (PathHunter CHO-K1 F2R beta-arrestin)
CVCL_KX03 (PathHunter CHO-K1 F2RL3 beta-arrestin) CVCL_KX04 (PathHunter CHO-K1 FFAR2 beta-arrestin) CVCL_KX05 (PathHunter CHO-K1 FPR1 beta-arrestin)
CVCL_KX06 (PathHunter CHO-K1 FPRL1 beta-arrestin) CVCL_KX07 (PathHunter CHO-K1 FSHR beta-arrestin) CVCL_KX08 (PathHunter CHO-K1 FXR Protein Interaction)
CVCL_KX09 (PathHunter CHO-K1 GALR1 beta-arrestin) CVCL_KX10 (PathHunter CHO-K1 GALR2 beta-arrestin) CVCL_KX11 (PathHunter CHO-K1 GCGR beta-arrestin)
CVCL_KX12 (PathHunter CHO-K1 GCGR beta-arrestin-1) CVCL_KX13 (PathHunter CHO-K1 GHSR1b beta-arrestin) CVCL_KX14 (PathHunter CHO-K1 GIPR beta-arrestin)
CVCL_KX15 (PathHunter CHO-K1 GLP1R beta-arrestin) CVCL_KX16 (PathHunter CHO-K1 GLP1R beta-arrestin-1) CVCL_KX17 (PathHunter CHO-K1 GLP2R beta-arrestin)
CVCL_KX18 (PathHunter CHO-K1 GPR1 beta-arrestin) CVCL_KX19 (PathHunter CHO-K1 GPR101 beta-arrestin) CVCL_KX20 (PathHunter CHO-K1 GPR103 beta-arrestin)
CVCL_KX21 (PathHunter CHO-K1 GPR107 beta-arrestin) CVCL_KX22 (PathHunter CHO-K1 GPR109A beta-arrestin) CVCL_KX23 (PathHunter CHO-K1 GPR109B beta-arrestin)
CVCL_KX24 (PathHunter CHO-K1 GPR12 beta-arrestin) CVCL_KX25 (PathHunter CHO-K1 GPR120L beta-arrestin) CVCL_KX26 (PathHunter CHO-K1 GPR120S beta-arrestin)
CVCL_KX27 (PathHunter CHO-K1 GPR120S beta-arrestin-1) CVCL_KX28 (PathHunter CHO-K1 GPR123 beta-arrestin) CVCL_KX29 (PathHunter CHO-K1 GPR132 beta-arrestin)
CVCL_KX30 (PathHunter CHO-K1 GPR135 beta-arrestin) CVCL_KX31 (PathHunter CHO-K1 GPR137 beta-arrestin) CVCL_KX32 (PathHunter CHO-K1 GPR139 beta-arrestin)
CVCL_KX33 (PathHunter CHO-K1 GPR141 beta-arrestin) CVCL_KX34 (PathHunter CHO-K1 GPR142 beta-arrestin) CVCL_KX35 (PathHunter CHO-K1 GPR143 beta-arrestin)
CVCL_KX36 (PathHunter CHO-K1 GPR146 beta-arrestin) CVCL_KX37 (PathHunter CHO-K1 GPR148 beta-arrestin) CVCL_KX38 (PathHunter CHO-K1 GPR149 beta-arrestin)
CVCL_KX39 (PathHunter CHO-K1 GPR15 beta-arrestin) CVCL_KX40 (PathHunter CHO-K1 GPR150 beta-arrestin) CVCL_KX41 (PathHunter CHO-K1 GPR151 beta-arrestin)
CVCL_KX42 (PathHunter CHO-K1 GPR152 beta-arrestin) CVCL_KX43 (PathHunter CHO-K1 GPR157 beta-arrestin) CVCL_KX44 (PathHunter CHO-K1 GPR161 beta-arrestin)
CVCL_KX45 (PathHunter CHO-K1 GPR162 beta-arrestin) CVCL_KX46 (PathHunter CHO-K1 GPR171 beta-arrestin) CVCL_KX47 (PathHunter CHO-K1 GPR173 beta-arrestin)
CVCL_KX48 (PathHunter CHO-K1 GPR176 beta-arrestin) CVCL_KX49 (PathHunter CHO-K1 GPR18 beta-arrestin) CVCL_KX50 (PathHunter CHO-K1 GPR182 beta-arrestin)
CVCL_KX51 (PathHunter CHO-K1 GPR23 beta-arrestin) CVCL_KX52 (PathHunter CHO-K1 GPR25 beta-arrestin) CVCL_KX53 (PathHunter CHO-K1 GPR26 beta-arrestin)
CVCL_KX54 (PathHunter CHO-K1 GPR27 beta-arrestin) CVCL_KX55 (PathHunter CHO-K1 GPR3 beta-arrestin) CVCL_KX56 (PathHunter CHO-K1 GPR30 beta-arrestin)
CVCL_KX57 (PathHunter CHO-K1 GPR31 beta-arrestin) CVCL_KX58 (PathHunter CHO-K1 GPR32 beta-arrestin) CVCL_KX59 (PathHunter CHO-K1 GPR35 beta-arrestin)
CVCL_KX60 (PathHunter CHO-K1 GPR37 beta-arrestin) CVCL_KX61 (PathHunter CHO-K1 GPR37L1 beta-arrestin) CVCL_KX62 (PathHunter CHO-K1 GPR39 beta-arrestin)
CVCL_KX63 (PathHunter CHO-K1 GPR4 beta-arrestin) CVCL_KX64 (PathHunter CHO-K1 GPR45 beta-arrestin) CVCL_KX65 (PathHunter CHO-K1 GPR50 beta-arrestin)
CVCL_KX66 (PathHunter CHO-K1 GPR52 beta-arrestin) CVCL_KX67 (PathHunter CHO-K1 GPR55 beta-arrestin) CVCL_KX68 (PathHunter CHO-K1 GPR6 beta-arrestin)
CVCL_KX69 (PathHunter CHO-K1 GPR61 beta-arrestin) CVCL_KX70 (PathHunter CHO-K1 GPR65 beta-arrestin) CVCL_KX71 (PathHunter CHO-K1 GPR75 beta-arrestin)
CVCL_KX72 (PathHunter CHO-K1 GPR78 beta-arrestin) CVCL_KX73 (PathHunter CHO-K1 GPR79 beta-arrestin) CVCL_KX74 (PathHunter CHO-K1 GPR83 beta-arrestin)
CVCL_KX75 (PathHunter CHO-K1 GPR84 beta-arrestin) CVCL_KX76 (PathHunter CHO-K1 GPR85 beta-arrestin) CVCL_KX77 (PathHunter CHO-K1 GPR88 beta-arrestin)
CVCL_KX78 (PathHunter CHO-K1 GPR92 beta-arrestin) CVCL_KX79 (PathHunter CHO-K1 GPR97 beta-arrestin) CVCL_KX80 (PathHunter CHO-K1 GR Protein Interaction)
CVCL_KX81 (PathHunter CHO-K1 HCRTR1 beta-arrestin) CVCL_KX82 (PathHunter CHO-K1 HCRTR2 beta-arrestin) CVCL_KX83 (PathHunter CHO-K1 HRH1 beta-arrestin)
CVCL_KX84 (PathHunter CHO-K1 HRH2 beta-arrestin) CVCL_KX85 (PathHunter CHO-K1 HRH3 beta-arrestin) CVCL_KX86 (PathHunter CHO-K1 HTR1A beta-arrestin)
CVCL_KX87 (PathHunter CHO-K1 LGR4 beta-arrestin) CVCL_KX88 (PathHunter CHO-K1 LGR5 beta-arrestin) CVCL_KX89 (PathHunter CHO-K1 LGR6 beta-arrestin)
CVCL_KX90 (PathHunter CHO-K1 LHCGR beta-arrestin) CVCL_KX91 (PathHunter CHO-K1 LTB4R beta-arrestin) CVCL_KX92 (PathHunter CHO-K1 LXRalpha Protein Interaction)
CVCL_KX93 (PathHunter CHO-K1 LXRbeta Protein Interaction) CVCL_KX94 (PathHunter CHO-K1 mADCYAP1R1 beta-arrestin) CVCL_KX95 (PathHunter CHO-K1 mADORA2B beta-arrestin)
CVCL_KX96 (PathHunter CHO-K1 mADORA3 beta-arrestin) CVCL_KX97 (PathHunter CHO-K1 mAGTRL1 beta-arrestin) CVCL_KX98 (PathHunter CHO-K1 mC5AR1 beta-arrestin)
CVCL_KX99 (PathHunter CHO-K1 MC5R beta-arrestin) CVCL_KY00 (PathHunter CHO-K1 mCCR3 beta-arrestin) CVCL_KY01 (PathHunter CHO-K1 mCCR4 beta-arrestin)
CVCL_KY02 (PathHunter CHO-K1 mCCR5 beta-arrestin) CVCL_KY03 (PathHunter CHO-K1 mCCR6 beta-arrestin) CVCL_KY04 (PathHunter CHO-K1 mCCR7 beta-arrestin)
CVCL_KY05 (PathHunter CHO-K1 mCCR8 beta-arrestin) CVCL_KY06 (PathHunter CHO-K1 mCCR9 beta-arrestin) CVCL_KY07 (PathHunter CHO-K1 mCMKLR1 beta-arrestin)
CVCL_KY08 (PathHunter CHO-K1 mCNR1 beta-arrestin) CVCL_KY09 (PathHunter CHO-K1 mCNR2 beta-arrestin) CVCL_KY10 (PathHunter CHO-K1 mCRHR1 beta-arrestin)
CVCL_KY11 (PathHunter CHO-K1 mCRTH2 beta-arrestin) CVCL_KY12 (PathHunter CHO-K1 mCXCR2 beta-arrestin) CVCL_KY13 (PathHunter CHO-K1 mCXCR3 beta-arrestin)
CVCL_KY14 (PathHunter CHO-K1 mCXCR5 beta-arrestin) CVCL_KY15 (PathHunter CHO-K1 mCXCR6 beta-arrestin) CVCL_KY16 (PathHunter CHO-K1 mDRD5 beta-arrestin)
CVCL_KY17 (PathHunter CHO-K1 mEBI2 beta-arrestin) CVCL_KY18 (PathHunter CHO-K1 mEDG1 beta-arrestin) CVCL_KY19 (PathHunter CHO-K1 mEDG3 beta-arrestin)
CVCL_KY20 (PathHunter CHO-K1 mEDG5 beta-arrestin) CVCL_KY21 (PathHunter CHO-K1 mEDNRA beta-arrestin) CVCL_KY22 (PathHunter CHO-K1 mEDNRB beta-arrestin)
CVCL_KY23 (PathHunter CHO-K1 mFPR1 beta-arrestin) CVCL_KY24 (PathHunter CHO-K1 mFPR2 beta-arrestin) CVCL_KY25 (PathHunter CHO-K1 mGALR2 beta-arrestin)
CVCL_KY26 (PathHunter CHO-K1 mGCGR beta-arrestin) CVCL_KY27 (PathHunter CHO-K1 mGCGR beta-arrestin-1) CVCL_KY28 (PathHunter CHO-K1 mGHSR1a beta-arrestin)
CVCL_KY29 (PathHunter CHO-K1 mGLP1R beta-arrestin) CVCL_KY30 (PathHunter CHO-K1 mGLP1R beta-arrestin-1) CVCL_KY31 (PathHunter CHO-K1 mGPR1 beta-arrestin)
CVCL_KY32 (PathHunter CHO-K1 mGPR84 beta-arrestin) CVCL_KY33 (PathHunter CHO-K1 mHTR2A beta-arrestin) CVCL_KY34 (PathHunter CHO-K1 MLNR beta-arrestin)
CVCL_KY35 (PathHunter CHO-K1 mLTB4R1 beta-arrestin) CVCL_KY36 (PathHunter CHO-K1 mMCHR1 beta-arrestin) CVCL_KY37 (PathHunter CHO-K1 mNPY2R beta-arrestin)
CVCL_KY38 (PathHunter CHO-K1 mOPRD1 beta-arrestin) CVCL_KY39 (PathHunter CHO-K1 mOPRK1 beta-arrestin) CVCL_KY40 (PathHunter CHO-K1 mOXTR beta-arrestin)
CVCL_KY41 (PathHunter CHO-K1 mP2RY12 beta-arrestin) CVCL_KY42 (PathHunter CHO-K1 mPPYR1 beta-arrestin) CVCL_KY43 (PathHunter CHO-K1 mPTAFR beta-arrestin)
CVCL_KY44 (PathHunter CHO-K1 MR Protein Interaction) CVCL_KY45 (PathHunter CHO-K1 MRGPRD beta-arrestin) CVCL_KY46 (PathHunter CHO-K1 MRGPRE beta-arrestin)
CVCL_KY47 (PathHunter CHO-K1 MRGPRF beta-arrestin) CVCL_KY48 (PathHunter CHO-K1 MRGPRX1 beta-arrestin) CVCL_KY49 (PathHunter CHO-K1 MRGPRX2 beta-arrestin)
CVCL_KY50 (PathHunter CHO-K1 MRGPRX4 beta-arrestin) CVCL_KY51 (PathHunter CHO-K1 mRXFP3 beta-arrestin) CVCL_KY52 (PathHunter CHO-K1 mRXFP4 beta-arrestin)
CVCL_KY53 (PathHunter CHO-K1 mSSTR2 beta-arrestin) CVCL_KY54 (PathHunter CHO-K1 mSSTR5 beta-arrestin) CVCL_KY55 (PathHunter CHO-K1 MTNR1A beta-arrestin)
CVCL_KY56 (PathHunter CHO-K1 MTNR1B beta-arrestin) CVCL_KY57 (PathHunter CHO-K1 mUTR2 beta-arrestin) CVCL_KY58 (PathHunter CHO-K1 mVIPR1 beta-arrestin)
CVCL_KY59 (PathHunter CHO-K1 NMBR beta-arrestin) CVCL_KY60 (PathHunter CHO-K1 NPBWR1 beta-arrestin) CVCL_KY61 (PathHunter CHO-K1 NPBWR2 beta-arrestin)
CVCL_KY62 (PathHunter CHO-K1 NPFFR1 beta-arrestin) CVCL_KY63 (PathHunter CHO-K1 NPR1 Functional Assay) CVCL_KY64 (PathHunter CHO-K1 NPY1R beta-arrestin)
CVCL_KY65 (PathHunter CHO-K1 NPY2R beta-arrestin) CVCL_KY66 (PathHunter CHO-K1 NTSR1 beta-arrestin) CVCL_KY67 (PathHunter CHO-K1 OPN5 beta-arrestin)
CVCL_KY68 (PathHunter CHO-K1 OPRD1 beta-arrestin) CVCL_KY69 (PathHunter CHO-K1 OPRL1 beta-arrestin) CVCL_KY70 (PathHunter CHO-K1 OPRM1 beta-arrestin)
CVCL_KY71 (PathHunter CHO-K1 OXER1 beta-arrestin) CVCL_KY72 (PathHunter CHO-K1 OXGR1 beta-arrestin) CVCL_KY73 (PathHunter CHO-K1 OXTR beta-arrestin)
CVCL_KY74 (PathHunter CHO-K1 P2RY11 beta-arrestin) CVCL_KY75 (PathHunter CHO-K1 P2RY12 beta-arrestin) CVCL_KY76 (PathHunter CHO-K1 P2RY4 beta-arrestin)
CVCL_KY77 (PathHunter CHO-K1 P2RY6 beta-arrestin) CVCL_KY78 (PathHunter CHO-K1 P2RY8 beta-arrestin) CVCL_KY79 (PathHunter CHO-K1 PPARalpha Protein Interaction)
CVCL_KY80 (PathHunter CHO-K1 PPARdelta Protein Interaction) CVCL_KY81 (PathHunter CHO-K1 PPARgamma Protein Interaction) CVCL_KY82 (PathHunter CHO-K1 PPYR1 beta-arrestin)
CVCL_KY83 (PathHunter CHO-K1 PRLHR beta-arrestin) CVCL_KY84 (PathHunter CHO-K1 PROKR1 beta-arrestin) CVCL_KY85 (PathHunter CHO-K1 PROKR2 beta-arrestin)
CVCL_KY86 (PathHunter CHO-K1 PTAFR beta-arrestin) CVCL_KY87 (PathHunter CHO-K1 PTGER2 beta-arrestin) CVCL_KY88 (PathHunter CHO-K1 PTGER3 beta-arrestin)
CVCL_KY89 (PathHunter CHO-K1 PTGIR beta-arrestin) CVCL_KY90 (PathHunter CHO-K1 PTHR1 beta-arrestin) CVCL_KY91 (PathHunter CHO-K1 PTHR2 beta-arrestin)
CVCL_KY92 (PathHunter CHO-K1 RARalpha Protein Interaction) CVCL_KY93 (PathHunter CHO-K1 RARbeta Protein Interaction) CVCL_KY94 (PathHunter CHO-K1 rCHRM4 beta-arrestin)
CVCL_KY95 (PathHunter CHO-K1 rCRTH2 beta-arrestin) CVCL_KY96 (PathHunter CHO-K1 rDRD1 beta-arrestin) CVCL_KY97 (PathHunter CHO-K1 rDRD2L beta-arrestin)
CVCL_KY98 (PathHunter CHO-K1 rDRD2S beta-arrestin) CVCL_KY99 (PathHunter CHO-K1 rEDG5 beta-arrestin) CVCL_KZ00 (PathHunter CHO-K1 rGPR120 beta-arrestin)
CVCL_KZ01 (PathHunter CHO-K1 rGPR35 beta-arrestin) CVCL_KZ02 (PathHunter CHO-K1 rOPRM1 beta-arrestin) CVCL_KZ03 (PathHunter CHO-K1 rPROKR1 beta-arrestin)
CVCL_KZ04 (PathHunter CHO-K1 rPROKR2 beta-arrestin) CVCL_KZ05 (PathHunter CHO-K1 rVIPR1 beta-arrestin) CVCL_KZ06 (PathHunter CHO-K1 RXFP3 beta-arrestin)
CVCL_KZ07 (PathHunter CHO-K1 RXFP4 beta-arrestin) CVCL_KZ08 (PathHunter CHO-K1 RXRgamma Protein Interaction) CVCL_KZ09 (PathHunter CHO-K1 SCTR beta-arrestin)
CVCL_KZ10 (PathHunter CHO-K1 sEDG5 beta-arrestin) CVCL_KZ11 (PathHunter CHO-K1 SSTR2 Activated GPCR Internalization) CVCL_KZ12 (PathHunter CHO-K1 SSTR2 beta-arrestin)
CVCL_KZ13 (PathHunter CHO-K1 SSTR3 beta-arrestin) CVCL_KZ14 (PathHunter CHO-K1 SSTR4 beta-arrestin) CVCL_KZ15 (PathHunter CHO-K1 SSTR5 beta-arrestin)
CVCL_KZ16 (PathHunter CHO-K1 TAAR5 beta-arrestin) CVCL_KZ17 (PathHunter CHO-K1 TACR1 beta-arrestin) CVCL_KZ18 (PathHunter CHO-K1 TACR2 beta-arrestin)
CVCL_KZ19 (PathHunter CHO-K1 TACR3 beta-arrestin) CVCL_KZ20 (PathHunter CHO-K1 THRalpha Protein Interaction) CVCL_KZ21 (PathHunter CHO-K1 THRbeta Protein Interaction)
CVCL_KZ22 (PathHunter CHO-K1 TRHR beta-arrestin) CVCL_KZ23 (PathHunter CHO-K1 UTR2 beta-arrestin) CVCL_KZ24 (PathHunter CHO-K1 VIPR1 beta-arrestin)
CVCL_KZ25 (PathHunter CHO-K1 VIPR2 beta-arrestin) CVCL_KZ26 (PathHunter CHO-K1 XCR1 beta-arrestin) CVCL_4589 (pgsA-745)
CVCL_4590 (pgsB-618) CVCL_4591 (pgsB-650) CVCL_4592 (pgsC-605)
CVCL_4593 (pgsD-677) CVCL_4594 (pgsE-606) CVCL_VQ78 (pgsF-17)
CVCL_VQ79 (pgsG-224) CVCL_RQ82 (PrecisION hHCN4-CHO) CVCL_LC64 (PrecisION hKCNQ1/hminK-CHO)
CVCL_LC65 (PrecisION hKv1.5-CHO) CVCL_LC66 (PrecisION hNav1.2-CHO) CVCL_RQ79 (PrecisION hNav1.3-CHO)
CVCL_XJ64 (PT1-1) CVCL_XJ66 (PT1-30) CVCL_XJ67 (PT1-55)
CVCL_XJ65 (PT1-7) CVCL_U563 (RPE.40) CVCL_4294 (RR-CHOKI)
CVCL_4V70 (SK24) CVCL_4708 (SK32) CVCL_IR03 (Super-CHO C1)
CVCL_IR04 (Super-CHO C2) CVCL_IR06 (Super-CHO ISS9) CVCL_R728 (SURE CHO-M)
CVCL_DD10 (SwR-100) CVCL_D586 (T-REx-CHO) CVCL_U010 (T02J-10/10)
CVCL_U011 (T02J-7/10) CVCL_U012 (T02J-9/10) CVCL_U013 (T26J-1/09)
CVCL_U014 (T35J-5/09) CVCL_LH73 (tsTM13) CVCL_J507 (tsTM18)
CVCL_LH72 (tsTM3) CVCL_J617 (tsTM4) CVCL_T762 (UPS-1)
CVCL_1N54 (Urd-A) CVCL_1N55 (Urd-B) CVCL_1N56 (Urd-C)
CVCL_4332 (UT-1) CVCL_DC04 (UT-2) CVCL_RQ08 (ValiScreen human CCR1)
CVCL_RQ09 (ValiScreen human CCR2b) CVCL_RQ16 (ValiScreen human CHRM1) CVCL_RQ17 (ValiScreen human CHRM2)
CVCL_RQ18 (ValiScreen human CHRM3) CVCL_RQ19 (ValiScreen human CHRM4) CVCL_RQ20 (ValiScreen human CHRM5)
CVCL_LC58 (ValiScreen human CRTH2) CVCL_RP99 (ValiScreen human CX3CR1) CVCL_RQ07 (ValiScreen human CXCR3)
CVCL_YJ66 (VAMPIRO CHO-K1) CVCL_HB35 (Z24) CVCL_HB89 (Z65)
CVCL_HB32 (ZP92) CVCL_8025 (ZR-78) CVCL_8027 (ZR-82)
CVCL_8028 (ZR-87)
škrečok čínskyCricetulus griseuszvieraciaetickáCHO K1; CHOK1; CHO cell clone K1; GM15452Bunková línia využívaná pri produkcii vakcín//Spontánne imortalizované bunkové línieovariálneženskédospelé/Doubling time: ~24 hours (DSMZ).
Omics: Deep RNAseq analysis.
Omics: Genome sequenced.
Omics: Metabolome analysis.
Omics: miRNA expression profiling.
Omics: Transcriptome analysis.
PubMed=10320750; DOI=10.1016/S0027-5107(99)00077-9
Hu T., Miller C.M., Ridder G.M., Aardema M.J.
Characterization of p53 in Chinese hamster cell lines CHO-K1, CHO-WBL, and CHL: implications for genotoxicity testing.
Mutat. Res. 426:51-62(1999)

PubMed=21804562; DOI=10.1038/nbt.1932
Xu X., Nagarajan H., Lewis N.E., Pan S.-K., Cai Z.-M., Liu X., Chen W.-B., Xie M., Wang W.-L., Hammond S., Andersen M.R., Neff N., Passarelli B., Koh W., Fan H.C., Wang J.-B., Gui Y.-T., Lee K.H., Betenbaugh M.J., Quake S.R., Famili I., Palsson B.O., Wang J.
The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line.
Nat. Biotechnol. 29:735-741(2011)

PubMed=21945585; DOI=10.1016/j.jbiotec.2011.09.014
Becker J., Hackl M., Rupp O., Jakobi T., Schneider J., Szczepanowski R., Bekel T., Borth N., Goesmann A., Grillari J., Kaltschmidt C., Noll T., Puhler A., Tauch A., Brinkrolf K.
Unraveling the Chinese hamster ovary cell line transcriptome by next-generation sequencing.
J. Biotechnol. 156:227-235(2011)

DOI=10.3390/pr1030296
Wurm F.M.
CHO quasispecies -- implications for manufacturing processes.
Processes 1:296-311(2013)

PubMed=23873082; DOI=10.1038/nbt.2624
Lewis N.E., Liu X., Li Y.-X., Nagarajan H., Yerganian G., O'Brien E., Bordbar A., Roth A.M., Rosenbloom J., Bian C., Xie M., Chen W.-B., Li N., Baycin-Hizal D., Latif H., Forster J., Betenbaugh M.J., Famili I., Xu X., Wang J., Palsson B.O.
Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome.
Nat. Biotechnol. 31:759-765(2013)

PubMed=26993211; DOI=10.1016/j.jbiotec.2016.03.022
Klanert G., Jadhav V., Shanmukam V., Diendorfer A., Karbiener M., Scheideler M., Bort J.H., Grillari J., Hackl M., Borth N.
A signature of 12 microRNAs is robustly associated with growth rate in a variety of CHO cell lines.
J. Biotechnol. 235:150-161(2016)

DOI=10.3390/pr5020020
Wurm F.M., Wurm M.J.
Cloning of CHO cells, productivity and genetic stability -- a discussion.
Processes 5:20.1-20.13(2017)

PubMed=28544881; DOI=10.1016/j.cels.2017.04.009
Yusufi F.N.K., Lakshmanan M., Ho Y.-S., Loo B.L.-W., Ariyaratne P., Yang Y., Ng S.-K., Tan T.R.-M., Yeo H.C., Lim H.L., Ng S.-W., Hiu A.-P., Chow C.-P., Wan C., Chen S., Teo G., Song G., Chin J.X., Ruan X., Sung K.W.-K., Hu W.-S., Yap M.G.-S., Bardor M., Nagarajan N., Lee D.-Y.
Mammalian systems biotechnology reveals global cellular adaptations in a recombinant CHO cell line.
Cell Syst. 4:530-542.e6(2017)

PubMed=32619503; DOI=10.1016/j.ymben.2020.06.002
Szeliova D., Ruckerbauer D.E., Galleguillos S.N., Petersen L.B., Natter K., Hanscho M., Troyer C., Causon T., Schoeny H., Christensen H.B., Lee D.Y., Lewis N.E., Koellensperger G., Hann S., Nielsen L.K., Borth N., Zanghellini J.
What CHO is made of: variations in the biomass composition of Chinese hamster ovary cell lines.
Metab. Eng. 61:288-300(2020)
https://en.wikipedia.org/wiki/Chinese_hamster_ovary_cell
K-562CVCL_0004ÁnoCVCL_J651 (DD) CVCL_6217 (DUTKO-1) CVCL_1G55 (EGFP-K562)
CVCL_WU73 (HL-CZ) CVCL_RY26 (K-562 CRISPRa) CVCL_S029 (K-562 SimpleCell O-GalNAc)
CVCL_LH52 (K-562-B1-V-2 p17) CVCL_LH51 (K-562-C-1 p365) CVCL_JM00 (K-562-GFP)
CVCL_UR39 (K-562-luc2) CVCL_LH50 (K-562-RH) CVCL_5950 (K-562R)
CVCL_2967 (K562 AZQR) CVCL_B502 (K562 BZQR) CVCL_2968 (K562 cl.6)
CVCL_GZ75 (K562 eGFP-ADNP) CVCL_AW13 (K562 eGFP-ATF1) CVCL_GZ76 (K562 eGFP-ATF3)
CVCL_AW14 (K562 eGFP-BACH1) CVCL_AW15 (K562 eGFP-CEBPB) CVCL_GZ77 (K562 eGFP-CEBPG)
CVCL_AW16 (K562 eGFP-CREB3) CVCL_GZ78 (K562 eGFP-CUX1) CVCL_AW17 (K562 eGFP-DDX20)
CVCL_AW18 (K562 eGFP-DIDO1) CVCL_AW19 (K562 eGFP-E2F1) CVCL_GZ79 (K562 eGFP-E2F4)
CVCL_GZ80 (K562 eGFP-E2F5) CVCL_GZ81 (K562 eGFP-ELF1) CVCL_GZ82 (K562 eGFP-ELK1)
CVCL_GZ83 (K562 eGFP-ETS2) CVCL_AW20 (K562 eGFP-ETV1) CVCL_AW21 (K562 eGFP-FOS)
CVCL_GZ84 (K562 eGFP-FOSL1) CVCL_GZ85 (K562 eGFP-FOXJ2) CVCL_GZ86 (K562 eGFP-GABPA)
CVCL_AW22 (K562 eGFP-GATA2) CVCL_GZ87 (K562 eGFP-GTF2A2) CVCL_GZ88 (K562 eGFP-GTF2E2)
CVCL_AW23 (K562 eGFP-HDAC8) CVCL_AW24 (K562 eGFP-HINFP) CVCL_AW25 (K562 eGFP-HMGB1)
CVCL_AW26 (K562 eGFP-ID3) CVCL_AW27 (K562 eGFP-ILK) CVCL_AW28 (K562 eGFP-IRF1)
CVCL_AW29 (K562 eGFP-IRF9) CVCL_AW30 (K562 eGFP-JUNB) CVCL_AW31 (K562 eGFP-JUND)
CVCL_AW32 (K562 eGFP-KLF1) CVCL_AW33 (K562 eGFP-KLF13) CVCL_AW34 (K562 eGFP-MAFG)
CVCL_GZ89 (K562 eGFP-MEF2D) CVCL_GZ90 (K562 eGFP-NFE2) CVCL_AW35 (K562 eGFP-NFE2L1)
CVCL_AW36 (K562 eGFP-NR2C1) CVCL_GZ91 (K562 eGFP-NR2C2) CVCL_AW37 (K562 eGFP-NR4A1)
CVCL_GZ92 (K562 eGFP-PBX2) CVCL_GZ93 (K562 eGFP-POLR2H) CVCL_AW38 (K562 eGFP-PTRF)
CVCL_AW39 (K562 eGFP-PTTG1) CVCL_AW40 (K562 eGFP-PYGO2) CVCL_AW41 (K562 eGFP-RELA)
CVCL_AW42 (K562 eGFP-SMARCA1) CVCL_AW43 (K562 eGFP-SMARCA2) CVCL_AW44 (K562 eGFP-TAF7)
CVCL_AW45 (K562 eGFP-TEAD2) CVCL_GZ94 (K562 eGFP-TFDP1) CVCL_AW46 (K562 eGFP-TSC22D4)
CVCL_GZ95 (K562 eGFP-USF2) CVCL_GZ96 (K562 eGFP-ZBTB11) CVCL_GZ97 (K562 eGFP-ZFX)
CVCL_GZ98 (K562 eGFP-ZKSCAN8) CVCL_GZ99 (K562 eGFP-ZNF148) CVCL_HA00 (K562 eGFP-ZNF175)
CVCL_HA01 (K562 eGFP-ZNF197) CVCL_AW47 (K562 eGFP-ZNF24) CVCL_XW96 (K562 eGFP-ZNF354B)
CVCL_HA02 (K562 eGFP-ZNF395) CVCL_XW97 (K562 eGFP-ZNF507) CVCL_HA03 (K562 eGFP-ZNF512)
CVCL_HA04 (K562 eGFP-ZNF584) CVCL_HA05 (K562 eGFP-ZNF589) CVCL_HA06 (K562 eGFP-ZNF639)
CVCL_HA07 (K562 eGFP-ZNF644) CVCL_HA08 (K562 eGFP-ZNF740) CVCL_HA09 (K562 eGFP-ZNF766)
CVCL_HA10 (K562 eGFP-ZNF83) CVCL_AW48 (K562 eGFP-ZSCAN9) CVCL_IM25 (K562 HHT)
CVCL_ZL53 (K562 NGLY1 KO c15) CVCL_ZL54 (K562 NGLY1 KO c20) CVCL_9120 (K562(A))
CVCL_9119 (K562(S)) CVCL_Z732 (K562-ARA-C) CVCL_JX91 (K562-AVB3)
CVCL_4V54 (K562-BMS-R) CVCL_Z733 (K562-CdA) CVCL_4V59 (K562-DAS[r])
CVCL_Z734 (K562-FLUD) CVCL_Z735 (K562-GEM) CVCL_9121 (K562-H)
CVCL_4V60 (K562-IMA[r]) CVCL_4V61 (K562-IMA[r]+DAS[r]) CVCL_4V62 (K562-IMA[r]+PON[r])
CVCL_D201 (K562-IMR) CVCL_9122 (K562-L) CVCL_J257 (K562-Luc)
CVCL_5J21 (K562-luc2) CVCL_D162 (K562-Lucena 1) CVCL_4V63 (K562-NIL[r])
CVCL_4V64 (K562-PON[r]) CVCL_UC14 (K562-r) CVCL_5J01 (K562-Red-FLuc)
CVCL_DP55 (K562-rn) CVCL_UC15 (K562-s) CVCL_XE50 (K562-Wnt5a)
CVCL_0368 (K562/A02) CVCL_Y198 (K562/AC) CVCL_3827 (K562/Adr)
CVCL_4V20 (K562/ara-C) CVCL_4V84 (K562/AS-3) CVCL_4V85 (K562/AS2)
CVCL_AZ73 (K562/CP) CVCL_D205 (K562/D1-9) CVCL_WI19 (K562/DAC)
CVCL_4T87 (K562/DNR) CVCL_Y168 (K562/etop20) CVCL_Y169 (K562/etop80)
CVCL_4V47 (K562/G01) CVCL_5144 (K562/MTX-2) CVCL_KS44 (K562/NFAT-luc)
CVCL_4V51 (K562/NIL-50) CVCL_D573 (K562/R7) CVCL_5145 (K562/Vin)
CVCL_S663 (K562/ZD1694.C) CVCL_0369 (K562YO) CVCL_9V30 (KDI/20)
CVCL_3000 (KO51) CVCL_IQ44 (NM-D4) CVCL_IQ45 (NM-F9)
CVCL_L434 (P2UR/K-562) CVCL_1Q81 (PC-MDS) CVCL_2697 (PUTKO)
CVCL_8463 (RM10) CVCL_8423 (RS-1 [Human leukemia]) CVCL_8440 (SAM-1)
CVCL_2200 (SPI-801) CVCL_2201 (SPI-802) CVCL_8427 (T-33)
CVCL_L806 (TI-1 [Human leukemia])
človekHomo sapiensľudskáetickáK562; K.562; K 562; KO; GM05372; GM05372EBunková línia využívaná pri produkcii vakcín//Rakovinové bunkové líniepľúcny kacinómženskédospelé53 rokovPart of: Cancer Cell Line Encyclopedia (CCLE) project.
Part of: COSMIC cell lines project.
Part of: ENCODE project common cell types; tier 1.
Part of: LL-100 blood cancer cell line panel.
Part of: MD Anderson Cell Lines Project.
Part of: NCI-60 cancer cell line panel.
Doubling time: 47 hours (PubMed=25984343); 19.6 hours (NCI-DTP); ~30-40 hours (DSMZ).
Microsatellite instability: Stable (MSS) (PubMed=23671654; Sanger).
Omics: Array-based CGH.
Omics: CNV analysis.
Omics: Deep antibody staining analysis.
Omics: Deep exome analysis.
Omics: Deep proteome analysis.
Omics: Deep quantitative phosphoproteome analysis.
Omics: Deep quantitative proteome analysis.
Omics: Deep RNAseq analysis.
Omics: DNA methylation analysis.
Omics: Fluorescence phenotype profiling.
Omics: Genome sequenced.
Omics: H2A.Z; ChIP-seq epigenome analysis.
Omics: H3K27ac ChIP-seq epigenome analysis.
Omics: H3K27me3 ChIP-seq epigenome analysis.
Omics: H3K36me3 ChIP-seq epigenome analysis.
Omics: H3K4me1 ChIP-seq epigenome analysis.
Omics: H3K4me2 ChIP-seq epigenome analysis.
Omics: H3K4me3 ChIP-seq epigenome analysis.
Omics: H3K79me2 ChIP-seq epigenome analysis.
Omics: H3K9ac ChIP-seq epigenome analysis.
Omics: H3K9me1 ChIP-seq epigenome analysis.
Omics: H3K9me3 ChIP-seq epigenome analysis.
Omics: H4K20me1 ChIP-seq epigenome analysis.
Omics: Pol2; ChIP-seq epigenome analysis.
Omics: lncRNA expression profiling.
Omics: Metabolome analysis.
Omics: Protein expression by reverse-phase protein arrays.
Omics: shRNA library screening.
Omics: SNP array analysis.
Omics: Transcriptome analysis.
Omics: Virome analysis using proteomics.
Misspelling: K-652; In Cosmic 1523829.
Misspelling: K652; In Cosmic 1516632 and Cosmic 2024372.
Derived from sampling site: Pleural effusion.
PubMed=163658; DOI=10.1182/blood.V45.3.321.321
Lozzio C.B., Lozzio B.B.
Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome.
Blood 45:321-334(1975)

PubMed=924690; DOI=10.1002/ijc.2910200505
Kerbel R.S., Pross H.F., Leibovitz A.
Analysis of established human carcinoma cell lines for lymphoreticular-associated membrane receptors.
Int. J. Cancer 20:673-679(1977)

PubMed=367973; DOI=10.1002/ijc.2910230202
Andersson L.C., Nilsson K., Gahmberg C.G.
K562 -- a human erythroleukemic cell line.
Int. J. Cancer 23:143-147(1979)

PubMed=528075; DOI=10.1002/ijc.2910240422
Andersson L.C., Jokinen M., Gahmberg C.G., Klein E., Klein G., Nilsson K.
Presence of erythrocytic components in the K562 cell line.
Int. J. Cancer 24:514-514(1979)

PubMed=570644; DOI=10.1038/278364a0
Andersson L.C., Jokinen M., Gahmberg C.G.
Induction of erythroid differentiation in the human leukaemia cell line K562.
Nature 278:364-365(1979)

PubMed=6996765; DOI=10.1182/blood.V56.3.344.344
Koeffler H.P., Golde D.W.
Human myeloid leukemia cell lines: a review.
Blood 56:344-350(1980)

PubMed=7194480; DOI=10.3181/00379727-166-41106
Lozzio B.B., Lozzio C.B., Bamberger E.G., Feliu A.S.
A multipotential leukemia cell line (K-562) of human origin.
Proc. Soc. Exp. Biol. Med. 166:546-550(1981)

PubMed=6954533; DOI=10.1073/pnas.79.7.2194
Westin E.H., Gallo R.C., Arya S.K., Eva A., Souza L.M., Baluda M.A., Aaronson S.A., Wong-Staal F.
Differential expression of the amv gene in human hematopoietic cells.
Proc. Natl. Acad. Sci. U.S.A. 79:2194-2198(1982)

PubMed=6091813; DOI=10.1182/blood.V64.5.1059.1059
Palumbo A., Minowada J., Erikson J., Croce C.M., Rovera G.
Lineage infidelity of a human myelogenous leukemia cell line.
Blood 64:1059-1063(1984)

PubMed=6582512; DOI=10.1073/pnas.81.2.568
Mattes M.J., Cordon-Cardo C., Lewis J.L. Jr., Old L.J., Lloyd K.O.
Cell surface antigens of human ovarian and endometrial carcinoma defined by mouse monoclonal antibodies.
Proc. Natl. Acad. Sci. U.S.A. 81:568-572(1984)

PubMed=3856862; DOI=10.1073/pnas.82.6.1810
Konopka J.B., Watanabe S.M., Singer J.W., Collins S.J., Witte O.N.
Cell lines and clinical isolates derived from Ph1-positive chronic myelogenous leukemia patients express c-abl proteins with a common structural alteration.
Proc. Natl. Acad. Sci. U.S.A. 82:1810-1814(1985)

PubMed=3857109; DOI=10.1016/0165-4608(85)90101-3
Chen T.-R.
Modal karyotype of human leukemia cell line, K562 (ATCC CCL 243).
Cancer Genet. Cytogenet. 17:55-60(1985)

PubMed=3023859; DOI=10.1128/MCB.6.2.607
Grosveld G., Verwoerd T., van Agthoven T., de Klein A., Ramachandran K.L., Heisterkamp N., Stam K., Groffen J.
The chronic myelocytic cell line K562 contains a breakpoint in bcr and produces a chimeric bcr/c-abl transcript.
Mol. Cell. Biol. 6:607-616(1986)

PubMed=2446768; DOI=10.1007/BF02797342
Walter H., Al-Romaihi F.A., Krob E.J., Seaman G.V.F.
Fractionation of K-562 cells on the basis of their surface properties by partitioning in two-polymer aqueous-phase systems.
Cell Biophys. 10:217-232(1987)

PubMed=3332852; DOI=10.1016/S0950-3536(87)80037-9
Keating A.
Ph positive CML cell lines.
Baillieres Clin. Haematol. 1:1021-1029(1987)

PubMed=2465826; DOI=10.1007/BF02918374
Walter H., Krob E.J., Al-Romaihi F.A., Johnson D., Lozzio C.B.
Detection of surface differences between closely related cell populations by partitioning. Cultured K-562 cell sublines.
Cell Biophys. 13:173-187(1988)

PubMed=3335022
Alley M.C., Scudiero D.A., Monks A., Hursey M.L., Czerwinski M.J., Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
Cancer Res. 48:589-601(1988)

PubMed=2140233; DOI=10.1111/j.1440-1827.1990.tb01549.x
Nakano A., Harada T., Morikawa S., Kato Y.
Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines.
Acta Pathol. Jpn. 40:107-115(1990)

PubMed=2041050; DOI=10.1093/jnci/83.11.757
Monks A., Scudiero D.A., Skehan P., Shoemaker R.H., Paull K., Vistica D.T., Hose C., Langley J., Cronise P., Vaigro-Wolff A., Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.
Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.
J. Natl. Cancer Inst. 83:757-766(1991)

CLPUB00447
Mulivor R.A., Suchy S.F.
1992/1993 catalog of cell lines. NIGMS human genetic mutant cell repository. 16th edition. October 1992.
(In) Institute for Medical Research (Camden, N.J.) NIH 92-2011; pp.1-918; National Institutes of Health; Bethesda (1992)

PubMed=8558913
Morita S., Tsuchiya S., Fujie H., Itano M., Ohashi Y., Minegishi M., Imaizumi M., Endo M., Takano N., Konno T.
Cell surface c-kit receptors in human leukemia cell lines and pediatric leukemia: selective preservation of c-kit expression on megakaryoblastic cell lines during adaptation to in vitro culture.
Leukemia 10:102-105(1996)

PubMed=9290701; DOI=10.1002/(SICI)1098-2744(199708)19:4<243::AID-MC5>3.0.CO;2-D
Jia L.-Q., Osada M., Ishioka C., Gamo M., Ikawa S., Suzuki T., Shimodaira H., Niitani T., Kudo T., Akiyama M., Kimura N., Matsuo M., Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.
Screening the p53 status of human cell lines using a yeast functional assay.
Mol. Carcinog. 19:243-253(1997)

PubMed=9510473; DOI=10.1111/j.1349-7006.1998.tb00476.x
Hosoya N., Hangaishi A., Ogawa S., Miyagawa K., Mitani K., Yazaki Y., Hirai H.
Frameshift mutations of the hMSH6 gene in human leukemia cell lines.
Jpn. J. Cancer Res. 89:33-39(1998)

PubMed=9738977; DOI=10.1111/j.1349-7006.1998.tb03275.x
Takizawa J., Suzuki R., Kuroda H., Utsunomiya A., Kagami Y., Joh T., Aizawa Y., Ueda R., Seto M.
Expression of the TCL1 gene at 14q32 in B-cell malignancies but not in adult T-cell leukemia.
Jpn. J. Cancer Res. 89:712-718(1998)

PubMed=10700174; DOI=10.1038/73432
Ross D.T., Scherf U., Eisen M.B., Perou C.M., Rees C., Spellman P.T., Iyer V., Jeffrey S.S., van de Rijn M., Waltham M., Pergamenschikov A., Lee J.C.F., Lashkari D., Shalon D., Myers T.G., Weinstein J.N., Botstein D., Brown P.O.
Systematic variation in gene expression patterns in human cancer cell lines.
Nat. Genet. 24:227-235(2000)

PubMed=11021758; DOI=10.1038/sj.leu.2401891
Majka M., Rozmyslowicz T., Honczarenko M., Ratajczak J., Wasik M.A., Gaulton G.N., Ratajczak M.Z.
Biological significance of the expression of HIV-related chemokine coreceptors (CCR5 and CXCR4) and their ligands by human hematopoietic cell lines.
Leukemia 14:1821-1832(2000)

DOI=10.1016/B978-0-12-221970-2.50457-5
Drexler H.G.
The leukemia-lymphoma cell line factsbook.
(In) ISBN 9780122219702; pp.1-733; Academic Press; London (2001)

PubMed=11248328; DOI=10.1016/s0145-2126(00)00125-9
Naumann S., Reutzel D., Speicher M., Decker H.-J.
Complete karyotype characterization of the K562 cell line by combined application of G-banding, multiplex-fluorescence in situ hybridization, fluorescence in situ hybridization, and comparative genomic hybridization.
Leuk. Res. 25:313-322(2001)

PubMed=12506034; DOI=10.1182/blood-2002-06-1770
Uno K., Inukai T., Kayagaki N., Goi K., Sato H., Nemoto A., Takahashi K., Kagami K., Yamaguchi N., Yagita H., Okumura K., Koyama-Okazaki T., Suzuki T., Sugita K., Nakazawa S.
TNF-related apoptosis-inducing ligand (TRAIL) frequently induces apoptosis in Philadelphia chromosome-positive leukemia cells.
Blood 101:3658-3667(2003)

PubMed=14642717; DOI=10.1016/j.forsciint.2003.09.002
Szibor R., Edelmann J., Hering S., Plate I., Wittig H., Roewer L., Wiegand P., Cali F., Romano V., Michael M.
Cell line DNA typing in forensic genetics -- the necessity of reliable standards.
Forensic Sci. Int. 138:37-43(2003)

PubMed=15637111; DOI=10.1096/fj.04-3062fje
Parson W., Kirchebner R., Muhlmann R., Renner K., Kofler A., Schmidt S., Kofler R.
Cancer cell line identification by short tandem repeat profiling: power and limitations.
FASEB J. 19:434-436(2005)

PubMed=15748285; DOI=10.1186/1479-5876-3-11
Adams S., Robbins F.-M., Chen D., Wagage D., Holbeck S.L., Morse H.C. III, Stroncek D., Marincola F.M.
HLA class I and II genotype of the NCI-60 cell lines.
J. Transl. Med. 3:11-11(2005)

PubMed=15843827; DOI=10.1038/sj.leu.2403749
Andersson A., Eden P., Lindgren D., Nilsson J., Lassen C., Heldrup J., Fontes M., Borg A., Mitelman F., Johansson B., Hoglund M., Fioretos T.
Gene expression profiling of leukemic cell lines reveals conserved molecular signatures among subtypes with specific genetic aberrations.
Leukemia 19:1042-1050(2005)

PubMed=16408098; DOI=10.1038/sj.leu.2404081
Quentmeier H., MacLeod R.A.F., Zaborski M., Drexler H.G.
JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders.
Leukemia 20:471-476(2006)

PubMed=17088437; DOI=10.1158/1535-7163.MCT-06-0433
Ikediobi O.N., Davies H., Bignell G.R., Edkins S., Stevens C., O'Meara S., Santarius T., Avis T., Barthorpe S., Brackenbury L., Buck G., Butler A., Clements J., Cole J., Dicks E., Forbes S., Gray K., Halliday K., Harrison R., Hills K., Hinton J., Hunter C., Jenkinson A., Jones D., Kosmidou V., Lugg R., Menzies A., Mironenko T., Parker A., Perry J., Raine K., Richardson D., Shepherd R., Small A., Smith R., Solomon H., Stephens P., Teague J.W., Tofts C., Varian J., Webb T., West S., Widaa S., Yates A., Reinhold W.C., Weinstein J.N., Stratton M.R., Futreal P.A., Wooster R.
Mutation analysis of 24 known cancer genes in the NCI-60 cell line set.
Mol. Cancer Ther. 5:2606-2612(2006)

PubMed=18277095; DOI=10.4161/cbt.7.5.5712
Berglind H., Pawitan Y., Kato S., Ishioka C., Soussi T.
Analysis of p53 mutation status in human cancer cell lines: a paradigm for cell line cross-contamination.
Cancer Biol. Ther. 7:699-708(2008)

PubMed=19372543; DOI=10.1158/1535-7163.MCT-08-0921
Lorenzi P.L., Reinhold W.C., Varma S., Hutchinson A.A., Pommier Y., Chanock S.J., Weinstein J.N.
DNA fingerprinting of the NCI-60 cell line panel.
Mol. Cancer Ther. 8:713-724(2009)

PubMed=20164919; DOI=10.1038/nature08768
Bignell G.R., Greenman C.D., Davies H., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F., Campbell P.J., Futreal P.A., Stratton M.R.
Signatures of mutation and selection in the cancer genome.
Nature 463:893-898(2010)

PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458
Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.
A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.
Cancer Res. 70:2158-2164(2010)

PubMed=21269460; DOI=10.1186/1752-0509-5-17
Burkard T.R., Planyavsky M., Kaupe I., Breitwieser F.P., Burckstummer T., Bennett K.L., Superti-Furga G., Colinge J.
Initial characterization of the human central proteome.
BMC Syst. Biol. 5:17-17(2011)

PubMed=21552520; DOI=10.1371/journal.pone.0019169
Gu T.-L., Nardone J., Wang Y., Loriaux M., Villen J., Beausoleil S., Tucker M., Kornhauser J., Ren J., MacNeill J., Gygi S.P., Druker B.J., Heinrich M.C., Rush J., Polakiewicz R.D.
Survey of activated FLT3 signaling in leukemia.
PLoS ONE 6:E19169-E19169(2011)

PubMed=22068913; DOI=10.1073/pnas.1111840108
Gillet J.-P., Calcagno A.M., Varma S., Marino M., Green L.J., Vora M.I., Patel C., Orina J.N., Eliseeva T.A., Singal V., Padmanabhan R., Davidson B., Ganapathi R., Sood A.K., Rueda B.R., Ambudkar S.V., Gottesman M.M.
Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance.
Proc. Natl. Acad. Sci. U.S.A. 108:18708-18713(2011)

PubMed=22278370; DOI=10.1074/mcp.M111.014050
Geiger T., Wehner A., Schaab C., Cox J., Mann M.
Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins.
Mol. Cell. Proteomics 11:M111.014050-M111.014050(2012)

PubMed=22384151; DOI=10.1371/journal.pone.0032096
Lee J.-S., Kim Y.K., Kim H.J., Hajar S., Tan Y.L., Kang N.-Y., Ng S.H., Yoon C.N., Chang Y.-T.
Identification of cancer cell-line origins using fluorescence image-based phenomic screening.
PLoS ONE 7:E32096-E32096(2012)

PubMed=22460905; DOI=10.1038/nature11003
Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.K., Yu J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Nature 483:603-607(2012)

PubMed=22628656; DOI=10.1126/science.1218595
Jain M., Nilsson R., Sharma S., Madhusudhan N., Kitami T., Souza A.L., Kafri R., Kirschner M.W., Clish C.B., Mootha V.K.
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation.
Science 336:1040-1044(2012)

PubMed=23325432; DOI=10.1101/gr.147942.112
Varley K.E., Gertz J., Bowling K.M., Parker S.L., Reddy T.E., Pauli-Behn F., Cross M.K., Williams B.A., Stamatoyannopoulos J.A., Crawford G.E., Absher D.M., Wold B.J., Myers R.M.
Dynamic DNA methylation across diverse human cell lines and tissues.
Genome Res. 23:555-567(2013)

PubMed=23671654; DOI=10.1371/journal.pone.0063056
Lu Y., Soong T.D., Elemento O.
A novel approach for characterizing microsatellite instability in cancer cells.
PLoS ONE 8:E63056-E63056(2013)

PubMed=23856246; DOI=10.1158/0008-5472.CAN-12-3342
Abaan O.D., Polley E.C., Davis S.R., Zhu Y.J., Bilke S., Walker R.L., Pineda M., Gindin Y., Jiang Y., Reinhold W.C., Holbeck S.L., Simon R.M., Doroshow J.H., Pommier Y., Meltzer P.S.
The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology.
Cancer Res. 73:4372-4382(2013)

PubMed=23933261; DOI=10.1016/j.celrep.2013.07.018
Moghaddas Gholami A., Hahne H., Wu Z., Auer F.J., Meng C., Wilhelm M., Kuster B.
Global proteome analysis of the NCI-60 cell line panel.
Cell Rep. 4:609-620(2013)

PubMed=23955599; DOI=10.1038/ng.2731
Kon A., Shih L.-Y., Minamino M., Sanada M., Shiraishi Y., Nagata Y., Yoshida K., Okuno Y., Bando M., Nakato R., Ishikawa S., Sato-Otsubo A., Nagae G., Nishimoto A., Haferlach C., Nowak D., Sato Y., Alpermann T., Nagasaki M., Shimamura T., Tanaka H., Chiba K., Yamamoto R., Yamaguchi T., Otsu M., Obara N., Sakata-Yanagimoto M., Nakamaki T., Ishiyama K., Nolte F., Hofmann W.K., Miyawaki S., Chiba S., Mori H., Nakauchi H., Koeffler H.P., Aburatani H., Haferlach T., Shirahige K., Miyano S., Ogawa S.
Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms.
Nat. Genet. 45:1232-1237(2013)

PubMed=24279929; DOI=10.1186/2049-3002-1-20
Dolfi S.C., Chan L.L.-Y., Qiu J., Tedeschi P.M., Bertino J.R., Hirshfield K.M., Oltvai Z.N., Vazquez A.
The metabolic demands of cancer cells are coupled to their size and protein synthesis rates.
Cancer Metab. 1:20-20(2013)

PubMed=24618588; DOI=10.1371/journal.pone.0091433
Chernobrovkin A.L., Zubarev R.A.
Detection of viral proteins in human cells lines by xeno-proteomics: elimination of the last valid excuse for not testing every cellular proteome dataset for viral proteins.
PLoS ONE 9:E91433-E91433(2014)

PubMed=24670534; DOI=10.1371/journal.pone.0092047
Varma S., Pommier Y., Sunshine M., Weinstein J.N., Reinhold W.C.
High resolution copy number variation data in the NCI-60 cancer cell lines from whole genome microarrays accessible through CellMiner.
PLoS ONE 9:E92047-E92047(2014)

PubMed=25960936; DOI=10.4161/21624011.2014.954893
Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
OncoImmunology 3:E954893-E954893(2014)

PubMed=25984343; DOI=10.1038/sdata.2014.35
Cowley G.S., Weir B.A., Vazquez F., Tamayo P., Scott J.A., Rusin S., East-Seletsky A., Ali L.D., Gerath W.F.J., Pantel S.E., Lizotte P.H., Jiang G., Hsiao J., Tsherniak A., Dwinell E., Aoyama S., Okamoto M., Harrington W., Gelfand E., Green T.M., Tomko M.J., Gopal S., Wong T.C., Li H., Howell S., Stransky N., Liefeld T., Jang D., Bistline J., Hill Meyers B., Armstrong S.A., Anderson K.C., Stegmaier K., Reich M., Pellman D., Boehm J.S., Mesirov J.P., Golub T.R., Root D.E., Hahn W.C.
Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
Sci. Data 1:140035-140035(2014)

PubMed=25485619; DOI=10.1038/nbt.3080
Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z., Liu H., Degenhardt J., Mayba O., Gnad F., Liu J., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.
A comprehensive transcriptional portrait of human cancer cell lines.
Nat. Biotechnol. 33:306-312(2015)

PubMed=27377824; DOI=10.1038/sdata.2016.52
Mestdagh P., Lefever S., Volders P.-J., Derveaux S., Hellemans J., Vandesompele J.
Long non-coding RNA expression profiling in the NCI60 cancer cell line panel using high-throughput RT-qPCR.
Sci. Data 3:160052-160052(2016)

PubMed=27397505; DOI=10.1016/j.cell.2016.06.017
Iorio F., Knijnenburg T.A., Vis D.J., Bignell G.R., Menden M.P., Schubert M., Aben N., Goncalves E., Barthorpe S., Lightfoot H., Cokelaer T., Greninger P., van Dyk E., Chang H., de Silva H., Heyn H., Deng X., Egan R.K., Liu Q., Mironenko T., Mitropoulos X., Richardson L., Wang J., Zhang T., Moran S., Sayols S., Soleimani M., Tamborero D., Lopez-Bigas N., Ross-Macdonald P., Esteller M., Gray N.S., Haber D.A., Stratton M.R., Benes C.H., Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.
A landscape of pharmacogenomic interactions in cancer.
Cell 166:740-754(2016)

PubMed=27807467; DOI=10.1186/s13100-016-0078-4
Zampella J.G., Rodic N., Yang W.R., Huang C.R.L., Welch J., Gnanakkan V.P., Cornish T.C., Boeke J.D., Burns K.H.
A map of mobile DNA insertions in the NCI-60 human cancer cell panel.
Mob. DNA 7:20-20(2016)

PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005
Li J., Zhao W., Akbani R., Liu W., Ju Z., Ling S., Vellano C.P., Roebuck P., Yu Q., Eterovic A.K., Byers L.A., Davies M.A., Deng W., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y., Mills G.B., Liang H.
Characterization of human cancer cell lines by reverse-phase protein arrays.
Cancer Cell 31:225-239(2017)

PubMed=29509191; DOI=10.1038/sdata.2018.30
Mchaourab Z.F., Perreault A.A., Venters B.J.
ChIP-seq and ChIP-exo profiling of Pol II, H2A.Z, and H3K4me3 in human K562 cells.
Sci. Data 5:180030-180030(2018)

PubMed=30285677; DOI=10.1186/s12885-018-4840-5
Tan K.-T., Ding L.-W., Sun Q.-Y., Lao Z.-T., Chien W., Ren X., Xiao J.-F., Loh X.-Y., Xu L., Lill M., Mayakonda A., Lin D.-C., Yang H., Koeffler H.P.
Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines.
BMC Cancer 18:940-940(2018)

PubMed=30737237; DOI=10.1101/gr.234948.118
Zhou B., Ho S.S., Greer S.U., Zhu X., Bell J.M., Arthur J.G., Spies N., Zhang X., Byeon S., Pattni R., Ben-Efraim N., Haney M.S., Haraksingh R.R., Song G., Ji H.P., Perrin D., Wong W.H., Abyzov A., Urban A.E.
Comprehensive, integrated, and phased whole-genome analysis of the primary ENCODE cell line K562.
Genome Res. 29:472-484(2019)

PubMed=30894373; DOI=10.1158/0008-5472.CAN-18-2747
Dutil J., Chen Z., Monteiro A.N., Teer J.K., Eschrich S.A.
An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.
Cancer Res. 79:1263-1273(2019)

PubMed=31068700; DOI=10.1038/s41586-019-1186-3
Ghandi M., Huang F.W., Jane-Valbuena J., Kryukov G.V., Lo C.C., McDonald E.R. III, Barretina J., Gelfand E.T., Bielski C.M., Li H., Hu K., Andreev-Drakhlin A.Y., Kim J., Hess J.M., Haas B.J., Aguet F., Weir B.A., Rothberg M.V., Paolella B.R., Lawrence M.S., Akbani R., Lu Y., Tiv H.L., Gokhale P.C., de Weck A., Mansour A.A., Oh C., Shih J., Hadi K., Rosen Y., Bistline J., Venkatesan K., Reddy A., Sonkin D., Liu M., Lehar J., Korn J.M., Porter D.A., Jones M.D., Golji J., Caponigro G., Taylor J.E., Dunning C.M., Creech A.L., Warren A.C., McFarland J.M., Zamanighomi M., Kauffmann A., Stransky N., Imielinski M., Maruvka Y.E., Cherniack A.D., Tsherniak A., Vazquez F., Jaffe J.D., Lane A.A., Weinstock D.M., Johannessen C.M., Morrissey M.P., Stegmeier F., Schlegel R., Hahn W.C., Getz G., Mills G.B., Boehm J.S., Golub T.R., Garraway L.A., Sellers W.R.
Next-generation characterization of the Cancer Cell Line Encyclopedia.
Nature 569:503-508(2019)

PubMed=31160637; DOI=10.1038/s41598-019-44491-x
Quentmeier H., Pommerenke C., Dirks W.G., Eberth S., Koeppel M., MacLeod R.A.F., Nagel S., Steube K., Uphoff C.C., Drexler H.G.
The LL-100 panel: 100 cell lines for blood cancer studies.
Sci. Rep. 9:8218-8218(2019)

PubMed=31978347; DOI=10.1016/j.cell.2019.12.023
Nusinow D.P., Szpyt J., Ghandi M., Rose C.M., McDonald E.R. III, Kalocsay M., Jane-Valbuena J., Gelfand E., Schweppe D.K., Jedrychowski M., Golji J., Porter D.A., Rejtar T., Wang Y.K., Kryukov G.V., Stegmeier F., Erickson B.K., Garraway L.A., Sellers W.R., Gygi S.P.
Quantitative proteomics of the Cancer Cell Line Encyclopedia.
Cell 180:387-402.e16(2020)

PubMed=32449352; DOI=10.1021/acs.jproteome.0c00254
Cao X.-W., Khitun A., Na Z.-K., Dumitrescu D.G., Kubica M., Olatunji E., Slavoff S.A.
Comparative proteomic profiling of unannotated microproteins and alternative proteins in human cell lines.
J. Proteome Res. 19:3418-3426(2020)
https://en.wikipedia.org/wiki/K562_cells

[1] Transformácia je proces, pri ktorom bunka prijme cudzorodé genetické informácie (DNA) nevírusového charakteru, a to bez priameho kontaktu darcu a príjemcu. Tranformácia sa prirodzene vyskytuje v prírode najmä pri baktériách, plesniach, kvasinkách alebo rastlinách, umelo ju vedci napodobňujú v genetickom inžinierstve s cieľom manipulovať vlastnosti danej bunky. Transformant je potom bunka, do ktorej vniklo cudzie DNA.
[2] Transfekcia je proces úmyselného zavedenia holých alebo čistených nukleových kyselín do eukaryotických buniek. Termín sa môže použiť aj pri iných typoch buniek, i keď na tent účel je zaužívaný pojem "transformácia". Naopak, pri zvieracích bunkách sa používa viac termín transfekcia, keďže transformáciou sa môže tiež pri tomto type buniek označovať karcinogenéza buniek. Transfektant je potom bunka, do ktorej bola transfekciou zabudovaná nukleová kyselina iného druhu.

Dátum poslednej aktualizácie: 13. 12. 2020
Súbor dát je súčasťou článku Etické kontroverzie vzniku, vývoja, pestovania a použitia embryonálnych bunkových kultúr z potratených ľudských plodov v očkovacích látkach
Dáta spravuje: Lekárnici za život – Slovensko, o. z. | Rabčianska 614/4 | 02943 Zubrohlava | Slovenská republika | IČO: 51957175 | Reg.č.: VVS/1-900/90-54487 | IBAN: SK37 1100 0000 0029 4306 6653
Zodpovedný redaktor: Mgr. Veronika Cagáňová, .
Zostavené podľa: Vaccine production cell line at expasy.org
Odkaz na vloženie súboru dát na Vaše webové stránky: https://lzz.sk//index.php?option=com_tabulizer&task=outputDataSource&tmpl=component&output=raw&ds_tag=rSxQ0b65clrpLIgfn2K9fgWs&ds_mode=html

Na produkciu vakcín sa dnes využíva hneď niekoľko embryonálnych bunkových línií pochádzajúcich z potratených ľudských plodov: Ide už o spomínanú bunkovú líniu WI-3822, izolovanú z pľúcnych buniek plodu ženského pohlavia švédskeho pôvodu potrateného na konci tretieho mesiaca gestačného veku a o bunkovú líniu MRC-523, ktorej zakladajúce bunky boli tiež izolované z pľúcnych buniek tento raz mužského ľudského plodu kaukazoidnej rasy potrateného v 14. týždni gestačného veku. Obe bunkové línie vznikli v šesťdesiatych rokoch minulého storočia a dodnes sú v katalógoch bunkových kultúr zaradené do kategórie „finite cell line“, teda „konečná bunková línia“.

Dr. Hayflick nechal bunkovú líniu WI-38, ktorú kultivoval bez súhlasu matky potrateného plodu vypraviť v roku 1973 v rámci projektu Skylab-3 na orbitálnu stanicu SŠA na obežnej dráhe Zeme. Tam vedecký pracovník posádky, inžinier elektroniky Owen Garriott24 (*1930 – 2019), pozoroval vplyv mikrogravitácie na delenie buniek, o čom neskôr Hayflick publikoval prácu.25

Už v roku 1977 vedecká obec uvažovala o „konečnosti“ spomenutých dvoch bunkových líniách, výsledkom čoho bolo „založenie“ novej embryonálnej bunkovej línie IMR-9026 kultivovanej na pľúcnych bunkách pochádzajúcich z potratu ľudského plodu ženského rodu. Daný plod bol vybraný Coriellovým Inštitútom pre medicínsky výskum (IMR) podľa prísnych kritérií tak, aby charakteristika jeho buniek bola „tak blízka, ako je len možné“ k bunkovej línii WI-38, čím sa majú „minimalizovať rozdiely pri zamenení za WI-38 v prebiehajúcich laboratórnych programoch“27.

Podľa abstraktu štúdie publikovanej v časopise Science, ktorou zodpovední výskumníci predstavovali túto novú bunkovú líniu, uviedli:

„Ide o prvú z plánovaných sérií ľudských bunkových línií, ktoré majú byť založené, charakterizované a uložené [banked] v biorepozitári vo veľkých množstvách ako podpora Národného inštitútu pre výskum starnutia a všeobecnej bunkovej biológie.“28

Napriek tomu, že bunková línia IMR-90 bola úspešne izolovaná a kultivovaná, nesplnila požiadavky na vysoké nároky „priemyselnej produkcie z dôvodu jej neschopnosti vydržať mnohonásobné pasážovanie“29.
V roku 2015 medzi tieto konečné bunkové línie pribudla úplne nová, a to Walvax-230, a ako už aj jej názov naznačuje, vznikla výlučne za účelom produkcie vakcín, pričom čínski výskumníci ešte pred jej vývojom „hodnotili“ 9 plodov „vhodných na potrat“ podľa vopred stanovených kritérií tak, aby sa čo najviac podobali plodom potrateným pri vývoji bunkových línií WI-38 a MRC-5. Na základe výsledkov tohto hodnotenia si za základ tejto novej bunkovej línie vybrali pľúcne bunky zdravého plodu potrateného v 3. mesiaci gestačného veku z dôvodu, že cisársky rez po predchádzajúcom pôrode 27 ročnej inak zdravej matky nebol údajne celkom zhojený.31

Výskumníci sa vo svojej štúdii, v ktorej túto bunkovú líniu predstavujú a definujú, vôbec netaja, že nimi vytvorená bunková línia má nahradiť v produkcii vakcín bunkové línie zo šesťdesiatych rokov minulého storočia nielen kvôli svojim lepším vlastnostiam, ale najmä preto, že pasáže týchto „historických“ línií sú už príliš vysoké. Sami svoje pohnútky k tomuto činu zdôvodňujú takto:

„Napríklad vakcína proti besnote na ľudských diploidných bunkách, ktorá je považovaná za zlatý štandard medzi vakcínami proti besnote v súčasnosti v Číne nie je dostupná. Navyše, produktívne bunkové kmene pre OKA-HDC32 dostupné na čínskom trhu od troch dodávateľov sú bunky MRC-5 v ich 32. a 33. pasáži, a teda už dosiahli – ako uvádzame vyššie – limit požadovaný Čínskou farmakopédiou (33. pasáž je pri MRC-5 posledné zdvojenie buniek, ktoré môže byť použité na produkciu [vírusu]). Závislosť na importovaných HDCS33, môže viesť k nestabilite dodávok rovnako ako aj k nepredvídateľným nákladom. Preto zámerom tejto štúdie je vyvinúť úplne novú... [embryonálnu bunkovú líniu] čínskeho pôvodu, ktorú bude možné použiť v procese priemyselnej výroby virálnych vakcín.“34

Dávnejší príklad osudu línie IMR-90 a tento príklad z nedávnej minulosti týkajúci sa línie Walvax-2 potvrdzujú, že vo vedeckých sférach a v plánovaní farmaceutických spoločností jestvujú jasné, preukázateľné a trvalé snahy nielen pokračovať vo využívaní embryonálnych bunkových línií pochádzajúcich z potratených ľudských plodov, ale z dôvodu „opotrebovania“ už raz kultivovaných „historických“ línií zakladať stále nové embryonálne bunkové línie pochádzajúce z vopred naplánovaných, dobre pripravených a premyslených selektívnych potratov inak zdravých ľudských plodov.

Ďalej, ešte v roku 1973 bola v Holandsku založená ľudská embryonálna bunková línia HEK 29335, pochádzajúca z buniek obličky potrateného holandského ľudského plodu ženského pohlavia.

Táto bunková línia sa však už radí medzi tzv. transformované bunkové línie. Znamená to, že do buniek bola v tomto prípade prostredníctvom adenovírusu (NCBI_TaxID; 28285; Adenovirus 5 [E1A/E1B]) zabudovaná nukleová kyselina iného druhu. Transfekciu vykonal kanadský biológ Frank Graham ako svoj 293. experiment v poradí... Vznikla tak karyotypicky abnormálna bunková línia, ktorá už má iné vlastnosti a nedokáže dôverne kopírovať správanie sa pôvodnej netransformovanej konečnej bunkovej línie.

Takto transformované bunkové línie, sú označované tiež ako pokračujúce alebo nesmrteľné či nekonečné bunkové línie v protiklade s konečnými či inak povedané smrteľnými bunkovými líniami. Pokračujúce bunkové kultúry možno deliť donekonečna vďaka umelým genetickým tranformáciám ich procesu delenia. Ich výhodou oproti konečným bunkovým líniám je, že „rastú“ rýchlejšie, teda populácia buniek sa znásobuje rýchlejšie, ich klony sú efektívnejšie a výťažok po každom „sadení“ je omnoho vyšší, zatiaľ čo nemajú také vysoké nároky na vyživovacie médiá a je možné ich pestovať aj v ko-kultúrach – teda na rozdiel od kontinuálnych buniek, ktoré je možné kultivovať iba v monokultúrach. Avšak, ako sme už uviedli, pokračujúce bunkové línie si však na rozdiel od konečných bunkových línií nedokážu zachovať funkcie rodičovských buniek. Konečné bunkové línie sú definované tkanivovými markermi, zatiaľ čo pokračujúce bunkové línie definujú najmä chromozomálne, enzymatické a antigénové markre.36

Geneticky modifikovaná bunková línia HEK 293 má komplexný karyotyp, definovaný dvomi alebo viacerými kópiami každého chromozómu a modálnym počtom chromozómov 64. Tieto bunky sú tiež označované aj ako hypotriploidné, keďže obsahujú trikrát menej chromozómov ako haploidná ľudská gaméta – rozumej pohlavná bunka, buď ženské vajíčko alebo spermia. Medzi chromozomálne abnormality tejto bunkovej línie patrí, že v sebe obsahuje tri kópie chromozómu X a štyri kópie chromozómu 17 a chromozómu 22.38

Transformované ľudské bunkové línie pochádzajúce z umelo potratených inak zdravých ľudských plodov vo svojej podstate skrývajú ešte väčšie morálne zlo, než „obyčajné“ konečné bunkové línie, ktoré poznáme zo šesťdesiatych rokov minulého storočia. Vo svojej zvrátenej snahe urobiť bunkové línie nesmrteľnými, siahli výskumníci nielen po eticky odsúdeniahodných bunkách pochádzajúcich z potratov, ale zároveň zasiahli do Bohom stvorenej architektúry bunky patriacej zabitému plodu a geneticky ju modifikovali podľa svojich predstáv.

V roku 1985 bola vytvorená konzorciom Crucell (dnes súčasťou firmy Johnson & Johnson Janssen) ďalšia transformovaná bunková línia PER.C638, izolovaná z buniek sietnice 18-týždňového potrateného ľudského plodu podľa gestačného veku, ktorá sa v súčasnosti používa v laboratóriách na vytvorenie vakcíny proti Ebole, HIV39 i proti koronavírusu nového typu. Bola transfekovaná adenovírusom typu 540 a používa sa tiež na produkciu follitropínu delta, ktorý sa predáva pod obchodným názvom Rekovelle.

Z toho istého plodu, z ktorého buniek bola založená bunková línia PER.C6 bola v roku 1996 založená aj pomocná transformovaná bunková línia HER 91141, ktorá svojimi vlastnosťami mala konkurovať už známej bunkovej línii HEK 293.42

Okrem týchto bunkových línií, ktoré môžeme označiť ako „rodičovské“, existujú aj ich „potomkovia“, resp. „následnícke“ bunkové línie odvodené od týchto rodičovských. Tak napríklad WI-38 má k dnešnému dňu registrovaných 13 následníckych bunkových línií, MRC-5 ich má 145, HEK-293 až 401, zatiaľ čo PER.C6 iba jednu a Walvax-2 a HER 911 nemajú ani jednu registrovanú „následnícku“ líniu. Následnícke línie sa vytvoria vždy, keď výskumníci chcú použiť čiastočne upravené vlastnosti pôvodnej bunkovej línie v špecifickom výskume či v inej aplikačnej praxi než je produkcia vakcín.

Nekonečné, resp. nesmrteľné bunkové línie, o ktorých snívajú ambiciózni vedci, ziskuchtivé farmaceutické spoločnosti či teológovia utišujúci svoje svedomie zaklínadlom – „jeden potrat zachráni milióny životov“ – však vznikajú aj z rakovinových buniek, telomerázou imortalizovaných buniek či zo spontánne imortalizovaných buniek.

A napriek tomu, že sú vakcíny čistené od obsahu bunkového odpadu, ktorý vznikol po tom, ako bol vírus na bunkách namnožený, stopy po fragmentoch ľudskej DNA („residual cell-substrate DNA“) potrateného ľudského plodu sú jednoznačne vo vakcíne stále prítomné.43

Dokonca WHO s touto skutočnosťou ráta a určuje maximálne limity DNA fragmentov vo vakcínach.44 Okrem etického, je tu ale aj zdravotný aspekt vplyvu DNA na imunitný systém a to tak, že ovplyvňujú TLR (Toll-like receptory) zapojené do zápalových procesov, čo je aktuálne v štádiu skúmania.45

IV.
Aké sú morálne a etické pohľady na používanie vakcín produkovaných na ľudských embryonálnych bunkách pochádzajúcich z potratov?


Morálna dilema spôsobená zavedením týchto očkovacích látok do praxe je opodstatnená. Na jednej strane stojí pacient alebo rodič, ktorý chce očkovaním chrániť seba či svoje dieťa pred ochorením. Na strane druhej však stojí morálny zákon a pohľad na pôvod týchto vakcín a spôsob ich prípravy. Ak by sa tieto vakcíny testovali iba na pacientoch bez ich súhlasu (podobne ako to bolo pri experimentoch so syfilisom Tuskegee), čítali by sme o tom na prvých stránkach novín a osoby zodpovedné za porušovanie práv pacientov by sa museli zo svojich činov verejne zodpovedať.

Zhrňme si teda morálne odsúdeniahodné aspekty, ktoré v sebe imanentne obsahujú vakcíny produkované na ľudských embryonálnych bunkových líniách pochádzajúcich z potratov:

  1. V prvom rade je to potrat ľudského plodu ako zabitie človeka. Samotný úmysel ho vykonať (lekármi) či podstúpiť (matkami), následne na základe požadovanej charakteristiky bunkovej línie, ktorá má vzniknúť jeho selektívne naplánovanie (výskumníkmi) a následne jeho konečné a nezvrátiteľné vykonanie. K tomuto odsúdeniahodnému aspektu sa pri „historických“ bunkových líniách ako WI-38 a MRC-5 pridružuje tiež klamstvo či zatajenie zo strany lekárov či výskumníkov voči matke podstupujúcej potrat, o tom, že časti tela jej plodu budú, resp. nebudú využité na vedecké účely.
  2. Ďalej je to nakladanie s ostatkami potrateného ľudského plodu tak, aby bolo jeho telo na úrovni buniek udržiavané pri „fyziologickom živote“ aj po smrti jeho pôvodcu na úrovni ľudských orgánových a tkanivových systémov s úmyslom využiť tento neprirodzený a vôľou pôvodcu neželený stav nie v samotný prospech potrateného plodu (napr. s úmyslom ho „oživiť“, „zachrániť“).
  3. Vystavenie takýchto ľudských buniek infekcii vírusom, za účelom, aby sa vírus replikoval ničením daných buniek.

K tejto spornej otázke sa podrobnejšie vyjadrila v roku 2005 Pápežská akadémia pre život46 v a taktiež Kongregácia pre náuku viery v Inštrukcii Dignitas personae47.

Vyjadrenie Katolíckej cirkvi v otázke používania očkovacích látok bolo na Slovensku zahrnuté v Stanovisku Subkomisie pre bioetiku Teologickej komisie Konferencie biskupov Slovenska (ďalej len Subkomisia) z roku 2013, kde sa kladie dôraz, aby sa veriaci snažili o využitie očkovacích látok, ktoré neboli vyvinuté na neeticky získaných embryonálnych bunkách, ale aby využili ich alternatívy. Avšak, v prípade, že:

„nie je k dispozícii očkovacia látka, ktorá by bola pripravená s použitím bunkovej alebo tkanivovej kultúry pripravenej eticky vhodným spôsobom, rodičia sú morálne oprávnení, ba povinní – vzhľadom na závažné dôvody ochrany života a zdravia svojho dieťaťa – dať svoje dieťa zaočkovať aj existujúcou očkovacou látkou.“

Následne Subkomisia naliehavo vyzýva a povzbudzuje zodpovedné inštitúcie, aby boli dostupné vakcíny vyrobené eticky vhodným spôsobom48.

Nie je však už len využitie takýchto vakcín vlastne súhlas s vykonaným Zlom, ktoré sa vykonalo na týchto potratených deťoch?

V Encyklike Evangelium Vitae z roku 1995 sa v bode 58 uvádza, že

„umelý potrat má rysy, ktoré ho robia osobitne vážnym a odsúdeniahodným zločinom. II. vatikánsky koncil ich spolu so zabíjaním detí definuje ako "odporný zločin" “ 49.

V tomto istom dokumente je spomenuté, že Pápež Pius XI v encyklike Casti connubii odmietol nepravé ospravedlňovanie umelého potratu50 a Pápež Pius XII.

„odsúdil akýkoľvek priamy potrat, to jest každý čin, ktorý priamo smeruje k zabitiu ešte nenarodeného ľudského života, "nezávisle od toho, či je zabitie cieľom, alebo je len prostriedkom k cieľu" 51.

Týmto prostriedkom k cieľu sa dá chápať  práve použitie buniek potratených detí pre prípravu vakcín. Z morálneho hľadiska sa do spolupráce s „odporným zločinom“ zapájajú tri kategórie osôb, a to:

  1. tí, ktorí vakcíny vyrábajú
  2. tí, ktorí sa podieľajú na ich predaji a marketingu
  3. tí, ktorí ich predpisujú a vydávajú (lekári a lekárnici)
  4. tí, ktorí ich potrebujú zo zdravotných dôvodov (pacienti, rodičia, deti...)

Je zjavné, že najväčšiu mieru spoluzodpovednosti nesú osoby uvedené v prvej kategórii, avšak rovnako nesú mieru spoluzodpovednosti aj morálne autority, ktoré v tejto veci mlčia (biskupi, kňazi). Pre ľudí v poslednej kategórii je úlohou hlavne zvážiť potrebu danej vakcíny a najmä skúmať ich pôvod a spôsob prípravy.

Aká je dostupnosť alternatívnych vakcín na Slovensku?

Na Slovensku sa používajú aj také vakcíny, ktoré pri svojej príprave nevyužívali amorálnym spôsobom získané ľudské embryonálne bunky, a teda je možnosť využiť túto alternatívu. Problematickejšie sú kombinované vakcíny, pričom niekedy len jeden z prítomných antigénov bol namnožený na ľudských embryonálnych bunkách (napr. M-M-RVAXPRO). Na trhu bola medzičasom dostupná aj vakcína proti príušniciam (MumpsVax, Merck), ktorú sa v roku 2010 firma Merck rozhodla už ďalej nevyrábať52.

Žiaľ, vakcína proti ružienke (rubeolla), ktorá spadá pod povinné očkovanie, a ktorá by bola pripravovaná na iných než MRC-5 bunkách, je dostupná len v Japonsku, kde u nás známu M-M-RVAXPRO vakcínu zakázali kvôli nežiaducim účinkom53. Konkrétne The Kitasato Institute vyrába vakcíny proti ružienke zvané Takahashi, TO-336 a Matuba, pripravované na bunkách z obličky králika, a Matuura pripravovanú na bunkách z embrya prepelice. Chemo-séro-terapeutický výskumný ústav Kaketsuken vyrába vakcínu proti nákazlivej žltačke typu A zvanú Ainmugen, pripravenú na bunkách z opičej obličky54, pričom u nás je dostupná len vakcína pripravovaná na MRC-5 ľudských embryonálnych bunkách. Na Európskom a Slovenskom trhu je v súčastnoti dostupnosť týchto vakcín sťažená a pre pacienta takmer nemožná.

Okrem ružienky, je ďalší problém s vakcínou proti ovčím kiahňam Varivax®, ktorá využíva taktiež MRC-5 ľudské embryonálne bunky, a ku ktorej niet alternatívy.

Čo ďalej?

Problematikou etického hľadiska na používanie týchto sporných vakcín sa už dávno zaoberajú mnohé inštitúcie a aktivisti. Je namieste uplatniť vyššie uvedené odporúčanie Pápežskej akadémie pre život:  

„Čo sa týka ochorení, proti ktorým niet alternatívnych vakcín, ktoré by boli dostupné a morálne akceptovateľné, je správne zdržať sa použitia týchto vakcín, ak je to možné urobiť bez vystavenia detí (a nepriamo celého obyvateľstva ako takého) značnému zdravotnému riziku.“

Preto je povinnosťou lekárov, zdravotníckych pracovníkov a rodičov prejsť k alternatívnym vakcínam (ak existujú) a taktiež vytvárať tlak na politických predstaviteľov a zdravotníctvo, aby boli sprístupnené na Slovenskom trhu morálne prijateľné vakcíny.


Zdroje:
1 EFPIA: „How are vaccines produced?“ Dostupné on-line a ŠÚKL: „Prehľad vakcín v povinnom očckovaní a popis ich pomocných látok“ Dostupné on-line.
2 Wadman, M.: „The Vaccine Race: Science, Politics, and the Human Costs of Defeating Disease.“ Viking: 2017, 448 s., ISBN 978-0525427537, úryvky dostupné on-line.
3 WIKIPEDIA: Stanley Plotkin. Dostupné on-line. JINFO: A Jewish Biomedical & life scientists. Dostupné on-line.
4 WIKIPEDIA: Ross Granville Harrison . Dostupné on-line.
5 WIKIPEDIA: John Franklin Enders. Dostupné on-line.
6 WIKIPEDIA: Thomas Huckle Weller. Dostupné on-line.
7 WIKIPEDIA: Frederick Chapman Robbins. Dostupné on-line.
8
Norrby, E. – Prusiner, S. B.: Polio and Nobel prizes: looking back 50 years. Ann Neurol. 2007 May;61(5):385-95.doi: 10.1002/ana.21153. Dostupné on-line.
9 Oshinsky, D.: Book review. Mastering Rubella. The Vaccine Race: Science, Politics, and the Human Costs of Defeating Disease by Meredith Wadman. In: The Faseb Journal. Dostupné on-line. JINFO: A Jewish Biomedical & life scientists. Dostupné on-line.
10 Tamže.
11
Hayflick, L. – Moorhead, P. S. (1961). „The serial cultivation of human diploid cell strains“. Exp Cell Res. 25 (3): 585–621. doi:10.1016/0014-4827(61)90192-6. PMID 13905658; alebo Hayflick, L. (1965). „The limited in vitro lifetime of human diploid cell strains“. Exp. Cell Res. 37 (3): 614–636. doi:10.1016/0014-4827(65)90211-9. PMID 14315085.
12
Hayflick, L. – Moorhead, P. S.: „The Serial Cultivation of Human Diploid Cell Strains, Experimental Cell Research“, 1961, 25, str. 591.
13 Hayflick, L. – Moorhead, P. S.: „The Serial Cultivation of Human Diploid Cell Strains.“, Experimental Cell Research, 1961, 25, str. 618.
14 WIKIPEDIA: Sven Gard. Dostupné on-line.
15 Gard, S. - Plotkin, S. – McCarthy, K.: „Gamma Globulin Prophylaxis; Inactivated Rubella Virus; Production and Biological Control of Live Attenuated Rubella Virus Vaccines“. Amer J. Dis Child Vol 118 Aug 1969
16 WI-38 (RRID:CVCL_0579) podľa katalógu Cellosaurus na Expasy.org. Dostupné on-line.
17 Wadman, 2017, úryvky podľa on-line zdroja a poznámok v katalógu Cellosaurus na Expasy.org k WI-38.
18 Vinnedge, Debra L.: „Aborted Fetal Cell Line Vaccines And The Catholic Family. A Moral and Historical Perspective.“ Children of God for Life. 2005. Dostupné on-line. a Duda, J.: „Vakcíny vyráběné kultivací na buňkách získaných z potracených lidských plodu“. Dostupné on-line.
19 Hayflick, L.: „The Limited In Vitro Lifetime of Human Diploid Cell Strains.“ Experimental Cell Research, 37, pg 629, 1965.
20 STATISTA.COM: Average life expectancy at birth in Sweden from 2009 to 2019, by gender. Dostupné on-line.
21
Hayflick, L.: „Mortality and Immortality at the Cellular Level: A review“. University of California, San Francisco, August, 1997.
22
WI-38 (RRID:CVCL_0579) podľa katalógu Cellosaurus na Expasy.org. Dostupné on-line.
23 MRC-5 (RRID:CVCL_0440) podľa katalógu Cellosaurus na Expasy.org. Dostupné on-line.
24
WIKIPEDIA: Owen Garriot. Dostupné on-line.
25
Montgomery, P. O. Jr – Cook, J. E. – Reynolds, R. C. – Paul, J. S. – Hayflick, L. – Stock, D. – Schulz, W. W. – Kimsey, S. – Thirolf, R. G. – Rogers, T. – Campbell, D.: „The response of single human cells to zero gravity“. In Vitro. 1978 Feb;14(2):165-73.doi: 10.1007/BF02618218. Dostupné on-line.
26 IMR-90 (RRID:CVCL_0347) podľa katalógu Cellosaurus na Expasy.org. Dostupné on-line.
27
Coriell Institutes for Medical Research, Cell Collections, A Brief History of IMR-90, Christine Beiswanger, PhD, Associate Professor, 2003/2004 Edition
28
Nichols, W. W. - Murphy, D. G. - Cristofalo, V. J. - Toji, L. H. - Greene, A. E. – Dwight, S. A.: „Characterization of a new human diploid cell strain, IMR-90“. Science  01 Apr 1977: Vol. 196, Issue 4285, str. 60-63
DOI: 10.1126/science.841339. Dostupné on-line.
29
Bo Ma, Li-Fang He, Yi-Li Zhang, Min Chen, Li-Li Wang, Hong-Wei Yang, Ting Yan, Meng-Xiang Sun, and Cong-Yi Zheng: „Characteristics and viral propagation properties of a new human diploid cell line, walvax-2, and its suitability as a candidate cell substrate for vaccine production.“ In: Hum Vaccin Immunother. 2015 Apr; 11(4): s. 998–1009. Dotupné on-line. Ďalej: von Seefried A, Chun JH: „Serially subcultivated cells as substrates for poliovirus production for vaccine“. Dev Biol Stand 1981; 47:25-33; PMID: 6262151 Dostupné on-line. Ďalej: Leiva R.: „A brief history of human diploid cell strains.“ Natl Cathol Bioeth Q 2006; 6 3:443-51; PMID: 17091551; http://dx.doi.org/10.5840/ncbq20066328. Dostupné on-line.
30
Walvax-2 (RRID:CVCL_5J50) podľa katalógu Cellosaurus na Expasy.org. Dostupné on-line.
31
Bo Ma, Li-Fang He, Yi-Li Zhang, Min Chen, Li-Li Wang, Hong-Wei Yang, Ting Yan, Meng-Xiang Sun, and Cong-Yi Zheng: „Characteristics and viral propagation properties of a new human diploid cell line, walvax-2, and its suitability as a candidate cell substrate for vaccine production.“ In: Hum Vaccin Immunother. 2015 Apr; 11(4): s. 998–1009. Dotupné on-line.
32 OKA-HDC je kmeň vírusu pravých kiahní izolovaný z japonského chlapca.
33
HDCS – human diploid cell strains – ľudské diploidné bunkové kmene, alebo embryonálne bunkové línie
34 Bo Ma, Li-Fang He, Yi-Li Zhang, Min Chen, Li-Li Wang, Hong-Wei Yang, Ting Yan, Meng-Xiang Sun, and Cong-Yi Zheng: „Characteristics and viral propagation properties of a new human diploid cell line, walvax-2, and its suitability as a candidate cell substrate for vaccine production.“ In: Hum Vaccin Immunother. 2015 Apr; 11(4): s. 998–1009. Dotupné on-line.
35
HEK293 (RRID:CVCL_0045) podľa katalógu Cellosaurus na Expasy.org. Dostupné on-line
36 AAT BIOQUEST: What is the difference between finite and continuous cell lines? Dostupné on-line.
37 WIKIPEDIA: HEK293. Dostupné on-line.
38 PER.C6 (RRID:CVCL_G704) podľa katalógu Cellosaurus na Expasy.org. Dostupné on-line
39 Right to Life of Michigan: Vaccines, Abortion, & Fetal Tissue, 2020. Dostupné on-line.    
40
NCBI_TaxID; 28285; Adenovirus 5 [E1A/E1B]
41 911 (RRID:CVCL_1K15) podľa katalógu Cellosaurus na Expasy.org. Dostupné on-line
42 https://www.liebertpub.com/doi/10.1089/hum.1996.7.2-215
43
Vaccines and Related Biological Products Advisory Committee, 154th Meeting. FDA. Food and Drug Administration. November 8, 2018. p. 33. Dostupné on-line. Ďalej: Vaccine Ingredients — DNA. Children's Hospital of Philadelphia. Dostupné on-line. Ďalej: Neporent, L.: What Aborted Fetuses Have to Do With Vaccines. 2. 2. 2015, ABC News. Dostupné on-line.
44
WHO: Guidelines on the quality, safety, and efficacy of biotherapeutic protein products prepared by recombinant DNA technology. Dostupné on-line.
45
Shao, J. – Gao, F. – LIN, H-J et al.: Short-Fragment DNA Residue from Vaccine Purification Processes Promotes Immune Response to the New Inactivated EV71 Vaccine by Upregulating TLR9 mRNA. PLOS ONE. 2016, 11(4). Dostupné on-line.
46
Sgreccia, E. – Pontifical academia pro vita: „Moral reflections on vaccines prepared from cells derived from aborted human foetuses“. Dostupné on-line.
47 Levada, W. Card.: „Instruction dignitas personae. On certain bioethical questions.“ Dostupné on-line. a zhrnutie KBS od doc. ThDr. MUDr. Jána Ďačoka SJ, PhD. Dostupné on-line.
48
Sečka, Š.: Stanovisko Subkomisie pre bioetiku Teologickej komisie Konferencie biskupov Slovenska k niektorým etickým aspektom povinného očkovania, 2013. Dostupné on-line.
49
Pápež Ján Pavol II.: Evangelium vitae, 1995. Dostupné on-line.
50
Pápež Pius XI.: Casti Connubii, 1930). Dostupné on-line.
51
Prejav k účastníkom lekársko-biologickej únie sv. Lukáša (12. novembra 1944): Prejavy a rozhlasové posolstvá VI, (1944-1945), 191; porov. Prejav k účastníčkam Kongresu Katolíckej únie talianskych pôrodných asistentiek (29. októbra 1951), II: AAS 43 (1951), 838.
52
Justice, Awareness & Basic Support. Dostupné on-line.
53 Japan: Why Japan banned MMR vaccine. Dostupné on-line.
54 On Vaccines Made From Cells of Aborted Fetuses. Dostupné on-line.